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Executive Summary 

Wildland fires and open burning are substantial sources of ozone precursors, particulate matter, 
and greenhouse gases. Fire emissions and their transport and chemical processing influence air 
quality, climate, and human health across a range of temporal and spatial scales. Air quality in 
Texas can be affected by fire events that occur locally, regionally, or across longer distances 
from within the United States or across international borders with Canada, Mexico, or Central 
America.  

The FINN modeling system was developed as a global-scale fire emissions model to estimate the 
daily emissions of trace gases and particles from open biomass burning. It was designed to 
support atmospheric chemical transport modeling, including consistent, high temporal and spatial 
resolution across local to global scales and chemical speciation of compounds for common 
atmospheric chemical mechanisms. Since its initial release in 2010, the model and its 
applications have continued to evolve, which has culminated in the development of FINNv2.2.  

The FINNv2.2 modeling system consists of three primary components that include the 
preprocessor, emissions model, and chemical speciation code. Its development addresses 
improvements needed to earlier versions, particularly in the detection of smaller fires and the 
estimation of area burned. The model incorporates recent data products and/or scientific findings 
for active fire detections, land cover characterization, biomass loadings, emission factors, and 
chemical speciation of emissions. 

Global simulations for 2016 and 2018 highlighted the effects of fire activity on emissions 
estimates for different regions of the world, as well as the interannual variability of emissions 
between the 2016 and 2018 fire seasons. Emissions estimates were developed for 2012 through 
2018 for North America. In Texas during this time span, years with relatively higher peaks in 
emissions, which typically occurred in the late winter/spring, included 2013 and 2016, 2017, and 
in particular 2018 as shown in Figure ES1. 

During 2016, which is the base year for the national Collaborative Emissions Modeling Platform, 
fire activity in Texas primarily occurred during the winter/spring months with peak emissions in 
February, as well as the late summer/fall with peak emissions in September. PM2.5, NOx, and 
non-methane organic compounds (NMOC) emissions exhibited the same seasonal patterns. 
Grasslands had a greater contribution to fire activity in February 2016 than September 2016. 
Forests provided smaller contributions to total area burned and NOx emissions than grasses or 
shrublands in Texas but had more pronounced influences on emissions of PM2.5 and especially 
NMOC.  

Several significant changes occurred between FINNv1.5 and v2.2. Overall the changes led to 
increases in emissions of PM2.5, NOx and NMOC with v2.2 in Texas during 2016. It is difficult 
to capture the full complexity of the interactions between model parameters that contribute to 
variations emissions estimates for any given fire event or between different fire events. However, 
it is evident that the new algorithm implemented in FINNv2.2 to address the limitations in the 
burned area assumptions of previous versions and the inclusion of active fire detections from 
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Figure ES1. Annual trends in monthly total PM2.5 emissions (Gg/mo) from FINN v2.2 during 
2012 through 2018 in Texas with active fie detections from the Visible Infrared Imaging 
Radiometer Suite (VIIRS) and Moderate Resolution Spectroradiometer (MODIS). 

    

VIIRS, in addition to MODIS, have made important contributions to differences in emissions 
estimates. Transitions to more recent MODIS active fire detection and land cover data products, 
as well as biomass loadings from the USDA Forest Service FCCS, also play a role. Emission 
factors are similar between the model versions with the notable exception of NMOC. All 
measured NMOC is included in the applied emission factor for FINN v2.2 rather than only the 
identified NMOC fraction. This change dominates the contribution to differences in these 
emissions estimates between the model versions.  

Results of the performance evaluation indicate that the modifications to FINN made between 
versions 1.5 and 2.2 have improved representation of wildfire smoke in the photochemical 
modeling results. Overall statistics for the CAMx model AOD comparison with satellite data 
indicate similar performance with the two versions of the emissions model. However, when 
smoke-dominated events were identified, the relationship between modeled and observed AOD 
improved for both FINN emissions versions. Furthermore, the case studies of smoke events show 
that model runs conducted with FINN v2.2 frequently showed better agreement with satellite 
observations of AOD relative to model runs conducted with FINN v1.5. These results indicate 
that the domain-wide statistics are dominated by variability in AOD unrelated to wildfire smoke. 
By focusing on high-smoke cases, we are able to identify and quantify notable improvements in 
model performance between FINN v1.5 and FINN v2.2. The evaluation performed here further 
demonstrate the value of emissions inventory assessment using satellite data.  

It is recommended that FINNv2.2 continue to undergo evaluation across different regions of the 
world and that new findings from on-going field campaigns continue to be used to inform future 
evolution of the model.   
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1. Introduction 

Wildland fires and open burning are substantial sources of ozone precursors, particulate matter, 
and greenhouse gases. Fire emissions and their transport and chemical processing influence air 
quality, climate, and human health across a range of temporal and spatial scales. Air quality in 
Texas can be affected by fire events that occur locally, regionally, or across longer distances 
from within the United States or across international borders with Canada, Mexico, or Central 
America. Crop residue burning for ground clearing and soil enrichment in Mexico’s Yucatan 
Peninsula and Central America during the spring months is an annual recurrence that has had 
pronounced, well-documented impacts on Texas air quality (Wang et al, 2009; Villanueva-Fierro 
et al., 2009; McMillan et al, 2010; TCEQ, 2013; Wang et al, 2017). Fires that have been shown 
to exacerbate Texas air pollution levels have originated from the remote boreal forests of eastern 
Alaska and western Canada (Morris et al., 2006), from the Mississippi delta states of Arkansas, 
Louisiana, Mississippi (Westenbarger and Morris, 2018), and from drought-stressed areas within 
or close to Texas such as the western Oklahoma and Texas Panhandle fires during March 2017 
and the Bastrop County Complex Fire in Central Texas during 2011. These events can lead to 
elevated pollutant levels in many of the state’s most populous areas and pose risks to human 
health.  

A myriad of factors contribute to the patterns and severity of biomass burning and emissions, 
including agricultural, forest, and waste management practices, land use change, climatic factors 
such as temperature and rainfall, drought status, and ecosystem diversity and health. Future 
climate, policy, and human behaviors may have profound and complex effects on the occurrence 
of fires. Schoennagel (2017) suggested that if trends in the increasing number and size of 
wildfires in western North America continue in the coming decades, policies that promote 
adaptive resilience of people and ecosystems to changing fire regimes will be needed to reduce 
future vulnerability. 

Characterization of fire emissions is required to understand contributions to ambient 
concentrations and population exposure to pollutants such as ozone, toxics, and primary and 
secondary particulate matter. Emission estimates can support a weight of evidence for 
exceptional event demonstrations for wildfires that influence measured ozone concentrations and 
affect determinations of exceedances of the National Ambient Air Quality Standards (NAAQS). 
In the context of air quality planning and management, fire emissions can contribute to 
background ozone concentrations that influence the relative effectiveness of local and regional 
emissions controls.  

The Fire Inventory from NCAR (FINN) was developed as a global fire emissions model that 
estimates daily emissions of trace gases and particles from open biomass burning (Wiedinmyer 
et al., 2011). It was designed to meet the needs of atmospheric chemical transport modeling, 
which include consistent, high temporal and spatial resolution across local to global scales and 
chemical speciation of compounds for common atmospheric chemical mechanisms. FINNv1 was 
released in 2010 (Wiedinmyer et al., 2011). FINNv1.5, was released in 2014, and the National 
Center for Atmospheric Research (NCAR) has served as the central repository for global 
emissions files spanning 2002-2018: http://bai.acom.ucar.edu/Data/fire/. Differences between 
versions 1 and 1.5 included updates to use the MODIS Collection 6 versus 5 product for fire 
detections, year-specific data for the MODIS Land Cover Type (LCT) and Vegetation 
Continuous Fields (VCF) products to identify land use/land cover classes and vegetation density, 
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respectively, and revisions to emissions factors for savanna, temperate and extratropical forest 
and chaparral. FINN has been applied in regions of the world that experience high fire activity to 
evaluate the influence of fire activity on air quality and public health (Nuryanto, 2015; Crippa et 
al., 2016; Ivey et al., 2014; Pimonsree et al., 2018), to examine the effects of changing climate 
and development patterns on wildfire emissions (Hurteau et al., 2014), and in comparisons with 
surface, aircraft and satellite-based observations (Stavrakou et al., 2016; Reddington et al., 2019) 
as well as with bottom-up inventories from other fire emission modeling systems (Larkin et al., 
2014, Pereira, 2016; Urbanski et al., 2018). Real-time emissions estimates from FINNv1.0 are 
used in the Whole Atmosphere Community Climate Model (WACCM) real-time forecasts 
(http://www.acom.ucar.edu/waccm/forecast/). Emissions estimates from FINN have been used in 
air quality modeling for Texas ozone nonattainment areas conducted by the Texas Commission 
on Environmental Quality (TCEQ).  

The objective of this work is to introduce the next generation of the FINN modeling system that 
is designated and publicly released as FINNv2.2. The Texas Air Quality Research Program 
(AQRP) has been instrumental in the ongoing development of FINN that has resulted in the 
development of this next generation model. Previous efforts have included AQRP Projects 12-
018 (McDonald-Buller et al., 2013) and 14-011 (McDonald-Buller et al., 2015). Significant 
changes have been made in the approach to determining burned area and the underlying land 
cover from previous versions, as well as updates to fuel loadings, emission factors, and chemical 
speciation profiles based on recent literature. Global simulations for 2016 and 2018 highlight the 
effects of fire activity on emissions estimates for different regions of the world. Emissions 
estimates for North America were developed for 2012 through 2018, a time period that includes 
2016, which is the base year for the national Collaborative Emissions Modeling Platform. 
FINNv2.2 performance was assessed using a new satellite algorithm, the Multi-Angle 
Implementation of Atmospheric Correction (MAIAC), for aerosol optical depth (AOD) 
retrievals, with a special focus on fire events that originate from within Mexico, Central 
America, or the Caribbean and influence Texas air quality. 
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2. Modeling System and Input Data Resources 

 

As in previous versions, FINNv2.2 is based on the framework developed by Wiedinmyer et al. 
(2006). Emissions are estimated as  

 

Ei = A (x,t) * B(x) * FB * efi       (1)  

  

where Ei is the mass emission of species i (kg day-1), A(x,t) is the area burned at time t and 
location x (km2 day-1), B(x) is the biomass (fuel) loading at location x (g m-2), FB is the fraction 
of biomass burned, and efi is the emission factor of species i (g kg-1 biomass burned) 
(Wiedinmyer et al., 2011). All biomass terms are on a dry weight basis. The FINNv2.2 modeling 
system consists of three primary components that include the preprocessor, emissions model, and 
chemical speciation code. Each is described below along with the default input data resources. 

2.1 Preprocessor 

2.1.1 Active Fire Detections 

The FINNv2.2 preprocessor was designed to estimate burned area from daily satellite detections 
of active fires and characterize the underlying land cover. In earlier version of FINN, global 
observations from the MODIS instruments on-board the National Aeronautics and Space 
Administration’s (NASA’s) Terra and Aqua satellites were used as the default for fire detection. 
FINNv2.2 adds the option to use active fire detections from VIIRS, onboard the Suomi National 
Polar-orbiting Partnership (Suomi-NPP), alone or in combination with MODIS active fire data.  

The MODIS Collection 6 (MCD14DL) and VIIRS active fire products were obtained from the 
NASA’s Fire Information for Resource Management System (FIRMS) data portal: 
https://firms.modaps.eosdis.nasa.gov/download/. Use of the MODIS product in FINNv2.2 
follows that of earlier versions of the model (Wiedinmyer et al., 2011). The MODIS product 
provides daily fire detections with a nominal horizontal resolution of ~1 km2 and the location, 
overpass time (UTC), and confidence of the detection. Data confidence is specified by a numeric 
scale of 0 to 100%. Detections with a confidence specification of less than 20% are eliminated 
from the analysis. Daily global coverage is not provided at latitudes between approximately 30° 
N and 30°S due to the observational swath path. Fire detections only in these equatorial regions 
are counted for a two-day period. Each fire is assumed to continue into the next day.  

With its improved spatial resolution of 375m, the VIIRS product provides more sensitive 
detection of fires of relatively small areas, improved mapping of large fire perimeters, and 
improved nighttime performance relative to MODIS fire detections (NASA, 2019). The higher 
detection rates of small fires could be particularly important for areas of the world where 
agriculture burning is common. Detection confidence for the VIIRS product is specified by three 
categories, low/nominal/high. In the FINNv2.2 preprocessor, detections with a confidence 
specification identified as “low” are eliminated from the analysis. It should be noted that only the 
data (Type=0) attributed to thermal anomalies from vegetation fires (Type=0) were included, i,e., 
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other thermal anomaly types associated with active volcanos or other static land sources had 
been filtered from the product. 

The simultaneous use of two fire products in FINNv2 does not lead to double counting fires by 
the preprocessor algorithm. The algorithm determines the spatial union of all detections for a 
given day as the burned area of the fire, as described in the Section 2.1.2. The identity of the 
sensor is not relevant for the determination of burned area, as long as the pixel size for each 
detection is correctly represented (i.e., 0.14 km2 for VIIRS and 1 km2 for MODIS).  

The active fire products report the time of date acquisition by Coordinated Universal Time 
(UTC). In contrast to previous versions of the model, the FINN v2.2 preprocessor uses local time 
in the specification of the date of a fire detection in order to facilitate comparisons of emissions 
estimates with observational data: 

Local Time = UTC + Nearest_Integer (Longitude/15)  (2) 

 

2.1.2 Burned Area 

Each reported active fire detection (Figure 1a) is assigned with a square area of 0.14 km2 from 
VIIRS or 1 km2 from MODIS (Figure 1b) based on the horizontal resolution of the data. The 
scan and track sizes of the satellite pixel for each fire detection are used to identify groups of 
records that represented contiguous detections. A rectangle with easterly and northerly sizes 
equal to 110% of the scan and track sizes is established for each detection (“detection 
rectangle”). Intersecting detection rectangles are associated with the detection of a single fire 
event by two contiguous satellite sensors or the detection of a fire in a nearby location by another 
satellite overpass. In either case, these overlapping records are assumed to be detections of the 
same fire event stretching across the area. A convex hull is generated between corresponding 
pairs of detection rectangles that directly intersect. Convex hulls from a cluster of detections are 
joined such that the resulting “fire polygon” is an estimate of the burned area for a single fire 
event for the day (Figure 1c).  
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Figure 1. Illustration of the burned area determination used in the FINNv2 preprocessor: (a) 
active fire detections, (b) burned area per detection, (c) detection clusters are joined for the 
determination of burned area. 

(a) 

 
(b) 

 
(c) 
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2.1.3 Land Cover Characterization 

The burned area for each fire is subdivided to analyze the underlying land cover. FINNv2.2 uses 
the Terra and Aqua combined MODIS Land Cover Type (MCD12Q1) Version 6 data product 
with the International Geosphere-Biosphere Programme (IGBP) classification scheme 
(https://lpdaac.usgs.gov/products/mcd12q1v006/). Other land cover data could be used with 
FINN, as in McDonald-Buller et al. (2013). Year-specific data are used when available. If 
unavailable for most of the current year due to a lag in the LCT data release, the most recent data 
available are used. 

For each fire polygon, the land cover characterization algorithm determines the distance between 
each detection point that is shorter than 0.5 arcminute (~1 km). Detection points are represented 
as nodes, and edges are weighted by the inverse distance. Each of the connected components is 
evaluated, and nodes are iteratively eliminated until no edges remained. For each node within the 
connected component, the sum of the weights of the edges (i.e., the inverse distance to 
neighboring nodes) is calculated. Nodes with the largest values are eliminated first; when this 
criterion includes more than one node, all nodes are replaced by the midpoint of the directly 
connected group. The fire polygon is divided into Voronoi tessellations using a subset of the fire 
detection coordinates. A raster is clipped based on the geometry of the subdivided fire polygon 
and the majority land cover type classification is determined (Figure 2).  

Each of the 16 IGBP land cover classifications are mapped to a generic vegetation type, 
depending on the vegetation type and latitude that distinguish tropical, temperate and boreal 
forests. The generic vegetations types include grassland, shrubs, tropical forest, temperate forest, 
boreal forest, temperate evergreen forest, and crops (generic). Figure 3 shows the spatial 
distribution of land cover in North America. 

The MODIS Vegetation Continuous Fields (VCF) product from NASA provides estimates of 
bare and vegetative cover. The map of bare cover from the MOD44B v006 MODIS/Terra VCF 
yearly product (https://lpdaac.usgs.gov/products/mod44bv006/) with a horizontal resolution of 
250m, shown in Figure 4, is overlaid on the fire polygon. The VCF raster is clipped based on the 
geometry of the polygon, and the average VCF value is calculated for tree, grass, and bare cover. 
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Figure 2. Illustration of the land cover determination in the FINNv2 preprocessor: (a) the burned 
area is subdivided to approximately 1 to 3 km2 polygons, overlaid onto the land cover raster 
(shown in the background) and (b) land cover for subdivided polygon is identified by the 
majority type. 

(a) 

 

 

(b) 
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Figure 3. Spatial distribution of land cover in North America. 
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Figure 4. MOD44B v006 MODIS/Terra VCF product for 2012 showing (a) percent tree cover, 
(b) percent non-tree cover, and (c) percent non-vegetated (bare) 

(a) 

 

(b) 

 

(c) 
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2.2 Emissions Model 

The FINNv2.2 emissions model utilizes the burned area estimate and land cover characterization 
from the preprocessor with mappings of bare ground cover and fuel loadings, emission factors by 
land cover type, and estimates of the fraction of biomass burned to determine the mass emissions 
of chemical species (Equation 1).  

2.2.1 Final Burned Area 

The area of each polygon is assumed to be the area of the fire (burned area), unless the land 
cover type as defined by the MODIS LCT product is grass, or if bare ground or water is 
identified in that space. The final burned area is estimated as: 

 

Burned Area ൌ  ቐ
Polygon Area if the land cover type is forest/shrub

Polygon Area ∗ 0.75 if  the land cover type is savanna/grass
0 if the land cover type is bare/water

 (3) 

 

2.2.2 Emission Factors and Chemical Speciation 

Emission factors are assigned to each generic vegetation type (listed in Section 2.1.3). In earlier 
versions of the FINN framework, results from Akagi et al. (2011) provided tabulations of 
weighted average emission factors for different ecosystems and fuel types that became part of the 
framework for FINNv1 (Wiedinmyer et al., 2011). These tables were last updated in February 
2015 and can be obtained from  http://bai.acom.ucar.edu/Data/fire/. Emission factors in FINN 
have been updated concurrently with the updates in these tables. As part of AQRP Project 14-
011, McDonald-Buller et al., 2015 added crop-specific emission factors for major crop types in 
the United States developed by McCarty (2011).  

Although there have been many studies since the Akagi et al. 2015 update, a complete update to 
the Akagi tables is challenging and beyond the scope of this project. For the FINNv2.2 
development, emission factors for temperate/boreal evergreen forests were updated with the 
Akagi et al. 2015 updates and reported emission factors from Liu et al (2017), Urbanski (2014), 
and Paton-Walsh (2014) (conifer forest results) and for croplands from Liu et al (2017), Fang et 
al. (2017), Santiago De La Rosa  et al. (2018), Stockwell et al. (2015, Table S3). Crop-specific 
emission factors for the United States are not included here but could be added to FINN v2.2, as 
in McDonald-Buller et al. (2015). Emission factors used in FINN v1.5 and v2.2 are summarized 
in Table 1.   

A notable difference in the emission factors used in FINN v2.2 relative to the earlier versions of 
FINN (e.g. Wiedinmyer et al, 2011) is that all measured NMOC is included in the applied 
emission factor rather than only the identified NMOC fraction. This reflects that identification of 
the NMOCs measured in emissions from fires has increased significantly in the time since Akagi 
et al. (2011), (e.g., Stockwell et al., 2015; Liu et al., 2016; Hatch et al., 2017). in FINNv1) and 
the contribution of unidentified compounds to the total mass of NMOC emissions. Overall, this 
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modification leads to a dramatic increase in the total NMOC emission factors for all vegetation 
types.  

The total NMOC emissions need to be distributed to the surrogate species of a chemical 
mechanism in order to be input and used with a chemical transport model. Mapping of the 
NMOC emissions to three different chemical mechanisms (SAPRC99, MOZART-4, and GEOS-
Chem) is presented by Wiedinmyer et al. (2011). For this project, an updated speciated mapping 
has been developed for the MOZART-T1 mechanism, shown in Table A1 of Appendix A. This 
mechanism is an update to the MOZART-4 mechanism and includes more species to which we 
can map the total NMOC. This mapping was done in part with the guidance from experts at 
NCAR who created the mechanism and will be called here MOZT1_map1.0. This is the first 
version of the mapping. Table A1 also includes mapping of FINN’s particulate matter species to 
those of the CF particulate matter mechanism in CAMx. 

2.2.3 Biomass Loading 

Biomass loading, or the amount of fuel available to be burned, is a needed input and is assigned 
by land cover type and global region. For areas outside of the continental U.S., biomass loadings 
are assigned to each generic vegetation type and global region. Selected values were updated for 
FINN v2.2 based on van Leeuwen et al. (2014). The fuel loading for crops was updated to 902 
g/m2 based on an average from van Leeuwen et al. (2014), Akagi et al. (2011), and Pouliot et al. 
(2017). Specific crop types are not identified in this version. 

Biomass loadings that can be burned by fuel type and global region are shown for FINNv.1.5 and 
FINNv2.2 in Table 2. Biomass loadings for FINN v1.5 match those presented by Wiedinmyer et 
al. (2011; refer to Table 2).  

For North America, FINNv2.2 utilizes biomass loadings for coarse/woody and herbaceous 
vegetation by land cover type derived from the Fuel Characteristic Classification System (FCCS) 
of the U.S. Department of Agriculture Forest Service (https://www.fs.fed.us/pnw/fera/fccs/), as 
described in the final project report and addendum for AQRP 14-011 
(http://aqrp.ceer.utexas.edu/projects.cfm). These biomass loadings, shown in Table 3, have 
priority over the regional default fuel loadings shown in Table 2. Biomass loadings for North 
America are shown in Figure 5. 

2.2.4 Fraction of Biomass Burned 

As in earlier version of the model, the fraction of biomass burned (FB) is determined as a 
function of tree cover based on the approach of Ito and Penner (2004). For areas with > 60% tree 
cover in the VCF product, FB is 0.3 for the woody fuel and 0.9 for the herbaceous cover. For 
areas < 40% tree cover, no woody fuel is assumed to burn, and the FB is 0.98 for the herbaceous 
cover. For fires in areas with 40% - 60% tree cover, the FB is 0.3 for woody fuels and is 
calculated as the following for herbaceous fuels: FB = exp (-0.13 × fraction of tree cover). The 
fraction of tree cover and fuel loading by land cover type are used to determine the amount of 
woody fuel available in each global region; herbaceous fuel loading is assumed to be identical to 
that of grasslands in each global region. 
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Table 1. Emission factors by land cover type and chemical species for FINN v1.5 and v2.2 (g kg biomass burned−1).  

Chemical 
Species 

FINN v1.5 and FINN v2.2 Emission Factors by Land Cover Type  

(g kg biomass burned−1) 

 Tropical 
Forest1 

Temperate 
Forest2 

Temperate 
Evergreen Forest2 

Boreal3 Woody 
Savannah4 

Savanna and 
Grasslands1 

Crops5

 v1.5 v2.2 v1.5 v2.2 v1.5 v2.2 v1.5 v2.2 v1.5 v2.2 v1.5 v2.2 v1.5 v2.2 

CO2 1643 1643 1510 1510 1647 1623 1489 1565 1716 1681 1692 1686 1537 1444

CO 92 93 122 122 88 112 127 111 68 67 59 63 111 91 

CH4 5.1 5.1 5.61 5.61 3.36 3.4 6 6 2.6 3 1.5 2 6 5.82 

NMOC6 26 51.9 28.5 56 23.5 49.3 29.3 48.5 

 

4.8 24.8 9.3 28.2 57 51.4 

H2 3.4 3.4 2 2 2 2 2.3 2.3 0.97 0.97 0.97 1.7 2.4 2.59 

NOx as NO 2.6 2.6 1.04 1.04 1.92 1.96 0.9 0.95 3.9 3.65 2.8 3.9 3.5 2.43 

SO2 0.4 0.4 1.1 1.1 1.1 1.1 1 1 0.68 0.68 0.48 0.9 0.4 0.4 

PM2.5 9.1 9.9 15 15 12.9 17.9 15.3 18.4 9.3 7.1 5.4 7.17 5.8 6.43 

TPM 18.5 18.5 18 18 18 18 18 18.4 15.4 15.4 8.3 8.3 13 13 

TPC 5.2 5.2 9.7 9.7 9.7 9.7 8.3 8.3 7.1 7.1 3 3 4 4 

OC 4.7 4.7 7.6 7.6 7.6 7.6 7.8 7.8 6.6 3.7 2.6 2.6 3.3 2.66 

BC 0.52 0.52 0.56 0.56 0.56 0.56 0.2 0.2 0.5 1.31 0.37 0.37 0.69 0.51 
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Chemical 
Species 

FINN v1.5 and FINN v2.2 Emission Factors by Land Cover Type  

(g kg biomass burned−1) 

 Tropical 
Forest1 

Temperate 
Forest2 

Temperate 
Evergreen Forest2 

Boreal3 Woody 
Savannah4 

Savanna and 
Grasslands1 

Crops5

 v1.5 v2.2 v1.5 v2.2 v1.5 v2.2 v1.5 v2.2 v1.5 v2.2 v1.5 v2.2 v1.5 v2.2 

NH3 1.33 1.3 2.47 2.47 0.84 1.17 2.7 1.8 1.2 1.2 0.49 0.56 2.3 2.12 

NO 0.91 0.9 0.34 0.95 0.34 0.95 1.5 0.83 1.4 0.77 0.74 2.16 1.7 1.18 

NO2 3.6 3.6 2.7 2.34 2.7 2.34 3 0.63 1.4 2.58 3.2 3.22 3.9 2.99 

NMHC 1.7 1.7 5.7 5.7 5.7 5.7 5.7 5.7 3.4 3.4 3.4 3.4 7 7 

1Emission factors for Tropical Forests, Savannah/Grasslands updated to average values from Akagi et al. 2011 (updated Feb. 2015) 

2Emission factors for Temperate Forest and Temperate Evergreen Forests are average values from Akagi et al 2011 (updated Feb 
2015) and results from Liu et al (2017), Urbanski (2014), and Paton-Walsh (2014). For Temperate Evergreen Forest, only results from 
evergreen forests included.  

3Boreal Forest emission factors are average of Akagi et al 2011 (updated 2015) with emission factors from boreal emission factors 
from Urbanski et al. (2014) 

4Woody Savannah (Shrubland) emission factors updated with values from Akagi et al. 2011 (updated Feb. 2015).  

5Crop Emission factors updated with average values from Akagi et al (2011) updated Feb. 2015 and results from Liu et al (2017), 
Fang et al. (2017), Santiago De La Rosa et al. (2018), Stockwell et al. (2015, Table S3).  

6NMOC emission factors now include identified and unidentified compounds.  
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Figure 5. Spatial distribution of fuel loadings in the North American region of FINN v2.2. 
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Table 2. Fuel loadings (g m−2) assigned by land cover type and global region. These values are 
based on the average of the two model estimates from Table 2 of Hoelzemann et al. (2004) as 
described Wiedinmyer et al. (2011) unless noted otherwise. Highlighted values indicate those 
updated for FINN v.2.2 based on Leeuwen et al. (2014).  

Global 
Region 

Biomass Loading by Land Cover Type for FINN v1.5 and FINNv2.2 

(g m-2) 

 

Tropical Forest Temperate 
Forest 

Boreal Forest Woody 
Savanna/      
Shrublands 

Savanna 
and 

Grasslandsg 

 

 

 

 

v1.5 v2.2 v1.5 v2.2 v1.5 v2.2 v1.5 v2.2 v1.5 v2.2 

North 
America 

28,076
b 

28,07
6 10,492

10,66
1e 

25,00
0a 

17,87
5e 5,705 4,762 976 976 

Central 
America 20,260 

26,50
0e 

11,000
a 

11,00
0   2,224 2,224 418 418 

South 
America 25,659 

26,75
5e 7,400a 7,400   3,077 3,077 552 624e 

Northern 
Africa 25,366 

25,36
6 3,497 3,497   2,501 2,501 318 382e 

Southern 
Africa 25,295 

25,29
5 6,100 6,100   2,483 2,483 360 411e 

Western 
Europe 

28,076
b 

28,07
6 7,120 7,120 6,228 6,228 4,523 4,523 

1,32
1 

1,32
1 

Eastern 
Europe 

28,076
b 

28,07
6 11,386

11,38
6 8,146 8,146 7,752 7,752 

1,61
2 

1,61
2 

North 
Central 
Asia 6,181c 6,181 20,807

20,80
7 

25,00
0a 

14,92
5e 

11,00
9 

11,00
9 

2,17
0 

2,17
0 

Near 
East 6,181c 6,181 10,316

10,31
6   2,946 2,946 655 655 
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Global 
Region 

Biomass Loading by Land Cover Type for FINN v1.5 and FINNv2.2 

(g m-2) 

 

Tropical Forest Temperate 
Forest 

Boreal Forest Woody 
Savanna/      
Shrublands 

Savanna 
and 

Grasslandsg 

 

 

 

 

v1.5 v2.2 v1.5 v2.2 v1.5 v2.2 v1.5 v2.2 v1.5 v2.2 

East 
Asia 6,181c 

14,94
1e 7,865 7,865   4,292 4,292 722 722 

Southern 
Asia 27,969 

26,54
6e 14,629

14,62
9   5,028 5,028 

1,44
5 

1,44
5 

Oceania 16,376 
16,37
6 

11,696
d 

13,53
5e   1,271 

2,483
f 245 552e 

Antarcti
ca 0 0 0 0 0 0 0 0 0 0 

a Akagi et al. (2011) and references therein; b tropical forest class added for North America and 
Europe (in LCT); c all Asia assigned equal tropical forest values; d taken as the average of 
tropical and temperate forest fuel loadings for Oceania; e van Leeuwen et al., 2014; f taken as the 
same for African woody savanna from van Leeuwen et al., 2014; g croplands assigned  same 
biomass loading as grasslands.  
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Table 3. North American biomass loadings (g m−2) by land cover type for coarse/woody and 
herbaceous vegetation. These values are based on the Fuel Characteristic Classification System 
(https://www.fs.fed.us/pnw/fera/fccs/) with the exceptions of croplandsa. 

Land Cover Type 

Biomass Loading 

(g m-2) 

 

Coarse/Woody

  
 

Herbaceous 

 

Water 0 0 

Evergreen Needleleaf Forest 28,930 437 

Evergreen Broadleaf Forest 19,917 650 

Deciduous Needleleaf Forest 15,653 541 

Deciduous Broadleaf Forest 19,982 964 

Mixed Forests 20,339 766 

Closed Shrublands 5,136 229 

Open Shrublands 2,889 169 

Woody Savannas 12,907 668 

Savannas 10,907 764 

Grasslands 2,822 407 

Permanent Wetlands 8,509 712 

Croplands 0 902a 

Urban and Built-Up 0 0 

Cropland/Natural Vegetation 9,080 822 

Snow and Ice 0 0 

Barren or Sparsely Vegetated 1,355 104 

a Taken as an average from van Leeuwen et al. (2014), Akagi et al., (2011), and Pouliot et al. 
(2017) 
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2.3 Computing Environment 

The FINNv2.2 modeling system has three primary components that include the preprocessor, 
emissions model, and chemical speciation code. It is in the preprocessing component of the code 
that the burned area polygons are created and merged with the associated land cover data. In 
earlier versions of the FINN model, preprocessing was accomplished in a piecemeal manner. The 
FINN v2.2 preprocessing algorithm was implemented in PostGIS, a database that supports 
geospatial data types and operations, which resulted in improved performance (i.e., shorter 
execution time) for the model. In order to facilitate portability, the Docker environment was 
selected to house the FINN preprocessor tools. Docker is an open source software development 
system platform (https://www.docker.com). It allows a developer to establish a Linux-based 
environment customized for the application that will run on multiple hosts such as Windows, 
MacOS, Linux. The Dockerfile, included as part of the FINN preprocessor, specifies the 
necessary libraries and applications, such as PostGIS and python. The output is a comma-
delimited file characterizing burned area and underlying land cover for active fires for use with 
the FINN v2.2 emissions model.  

For each fire point, fuel loadings and emissions factors are assigned based on region, land cover 
type and vegetation density within the emissions model. The emissions code utilizes this 
information with the input file created from the preprocessor to determine overall emissions for 
all fires. The output are emission estimates in units of mass per time in comma-delimited format. 
The emissions code is in IDL. 

Output from the emissions model is postprocessed by the speciation model, the final component 
of the FINN framework. It allocates the total NMOC to the surrogate species of the MOZART-
T1 mechanism. The output provides emission estimates in units of moles per time. As with the 
emissions mode in comma-delimited format. As with the code for the emissions model, the code 
for the chemical speciation algorithm is in IDL.  

The FINNv2.2 code will be distributed through the NCAR GitHub (https://github.com/NCAR). 
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3. Air Quality Modeling 

A photochemical modeling episode, developed by the TCEQ, was used to examine the effects of 
fires on air quality in North America and to support the assessment of FINN performance with 
the MAIAC AOD product. This section described the model configuration and spatial domain as 
well as the preprocessing conducted to prepare the chemically speciated FINN v2.2 emissions 
estimates for use as input to the model. At the time of this study, the TCEQ was conducting its 
air quality modeling for the 2012 base year. Thus, the implications of fire events on air quality 
during 2012 were the focus of this analysis. 

 

3.1 CAMx Configuration 

Air quality simulations were conducted with the Comprehensive Air Quality Model with 
Extensions (CAMx) for the May 1- October 1, 2012, time period, obtained from the TCEQ 
(https://www.tceq.texas.gov/airquality/airmod/data/tx2012. The modeling domain is shown in 
Figure 6. It includes a 36-km domain over the CONUS and southern Canada and northern 
Mexico, a 12-km domain covering Texas and most surrounding states, and a 4-km grid over 
eastern Texas. The vertical grid shown in Table 4 consists of 29 layers.  

The TCEQ’s base case with episode day-specific emissions was selected as the starting point for 
this project. Fire emissions from FINN v1.5 (GLOB_2012_02282013_MOZ4.txt) were 
processed by the TCEQ at the time of the episode development. These were retained in the 
default configuration of CAMx for this project and used as the basis for comparison with new 
emissions estimates from FINNv2.2. The processing of fire emissions estimates from FINN for 
use with CAMx is described in Section 3.2. Several changes were made to the TCEQ’s base case 
configuration to obtain the default configuration used in this work. The CAMx version was 
updated from v6.31 to v.6.5. The gas-phase chemical mechanism was updated from TCEQ’s 
default of CB6r2h to CB6r4. The particulate matter mechanism was also enabled. The model 
configuration and input data sources used in this project are summarized in Table 5. 
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Figure 6. CAMx 36km (black)/12km (blue)/4km (green) nested modeling grids.  

 

Source:https://www.tceq.texas.gov/assets/public/implementation/air/sip/hgb/HGB_2016_AD_RFP/AD_Adoption/1
6016SIP_HGB08AD_ado.pdf  
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Table 4. Mapping between WRF and CAMx model vertical layer structures. 

CAMx Layer WRF Layer Top 

m (AGL) 

Center 

m (AGL) 

Thickness 

(m) 

29 42 18250 16445 3611 

28 39 14369 13632 2015 

27 37 12624 10786 3675 

26 33 8949 7891 2115 

25 30 6833 6289 1088 

24 28 5746 5290 911 

23 26 4835 4449 772 

22 24 4063 3704 717 

21 22 3346 3175 341 

20 21 3005 2840 330 

19 20 2675 2515 320 

18 19 2355 2225 259 

17 18 2096 1969 253 

16 17 1842 1718 248 

15 16 1595 1474 242 

14 15 1353 1281 143 

13 14 1210 1140 141 

12 13 1069 1000 139 

11 12 930 861 138 

10 11 792 747 91 

9 10 702 656 90 

8 9 612 567 89 

7 8 522 478 89 
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CAMx Layer WRF Layer Top 

m (AGL) 

Center 

m (AGL) 

Thickness 

(m) 

6 7 433 389 88 

5 6 345 302 87 

4 5 258 215 87 

3 4 171 128 86 

2 3 85 60 51 

1 2 34 17 34 

Source:https://www.tceq.texas.gov/assets/public/implementation/air/sip/hgb/HGB_2016_AD_RFP/AD_Adoption/1
6016SIP_HGB08AD_ado.pdf  
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Table 5. Default model configuration and input data for the 2012 CAMx modeling episode.  

Model Component  Description 

Modeling Period  May 1 – October 1, 2012 
 

CAMx Version  6.5 
 

Horizontal Domain  36km/12km/4km (Figure 6) 
 

Vertical Structure  28 Vertical Layers (Table 6) 
 

Meteorological Model  Weather Research and Forecast (WRF) v.3.7.1 with KVPATCH 
modification 

 

Dry Deposition Scheme  Wesely 

Chemical Mechanism  CB6r4 (Carbon Bond v6 revision 4) gas‐phase mechanism 
 
CF_SOAP_ISORROPIA particulate matter mechanism (CF: coarse/fine 
size fraction, SOAP2.1: organic aerosol module, ISORROPIA:  inorganic 
module)

Boundary and Initial 
Conditions 

Goddard Earth Observing System Chemistry Model (GEOS‐Chem) 
 

Surface Characteristics 
(Topographic Elevation, Leaf 
Area Index (LAI), Vegetative 
Distribution, Water/Land 
Boundaries) 
 

36‐km domain: Biogenic Emissions Land use Database (BELD) v.3 
outside the U.S., 2006 National Land Cover Dataset (NLCD) for U.S 
 
4‐km and 12‐km domains: Popescu et al., 2012a 
 
LAI: Monthly average from the 8‐day Moderate‐Resolution Imaging 
Spectroradiometer (MODIS) MCD15A2 product 
 

Emissions  Fires: FINNv1.5 (http://bai.acom.ucar.edu/Data/fire/,file 
GLOBAL_FINNv15_2012_MOZ4_7112014.txt) 
 
TCEQ 2012 “reg4a” for low‐level sources and “reg6a” for elevated 
sources: 
Biogenic: BEIS v 3.61 
 
Stationary Point Sources: EPA’s 2011 Modeling Platform, EPA’s Air 
Markets Program Database (AMPD), State of Texas Air Reporting 
System (STARS), U.S. Bureau of Ocean Energy 
Management 2011 Gulf‐Wide Emissions Inventory; Environment 
Canada 2006 National Pollutant Release Inventory  
 
On‐Road Mobile: MOVES2014 
 
Nonroad Mobile: EPA’s National Mobile Inventory Model (NMIM), 
EPA’s 2011 National Emissions Inventory (NEI), Texas Air Emissions 
Repository (TexAER), Texas Nonroad Model (TexN), Federal Aviation 
Administration (FAA) Emissions Dispersion Modeling System (EDMS) 
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Model Component  Description 

Area: EPA’s 2011 NEI, TexAER 
 

Source:https://www.tceq.texas.gov/assets/public/implementation/air/sip/hgb/HGB_2016_AD_RFP/AD_Adoption/1
6016SIP_HGB08AD_ado.pdf 

a Popescu, S. C., J. Stukey, M. Karnauch, J. Bowling, X. Zhang, W. Booth, N.-W. Ku, 2008, The 
New Central Texas Land Use Land Cover Classification Project, TCEQ Contract No. 582-5-
64593-FY08-23, 
http://www.tceq.state.tx.us/assets/public/implementation/air/am/contracts/reports/oth/5820564593FY0823-
20081230-tamu-New_Central_TX_LULC.pdf 

 

3.2 Fire Emissions Processing 

Processing of the fire emissions estimates from the FINN modeling system for use with CAMx 
was accomplished using version 3.22 of the Emission Processing System (EPS) (Ramboll, 2015). 
Several key aspects of the processing included chemical speciation of emissions from 
MOZART-T1, which is the output of the FINN modeling system, for the CB6r4 mechanism used 
in CAMx, as well as the temporal and vertical allocations of fire emissions.   

A mapping of MOZART-T1 species to CB6r4 compounds is shown in Table A2 of Appendix A. 
This mapping was applied in the firespec v3.2 that served as the bridge between output from the 
FINN modeling system and EPS3. FINN’s coarse PM, fine PM, organic carbon, elemental 
carbon, are mapped CF mechanism species. The module also removes fires outside of the CAMx 
outer domain. 

A diurnal profile is applied to the emissions in the tmprl module. In their base case, the TCEQ 
applied a diurnal profile developed by Randerson et al. (2012). In this work, the Randerson 
profile was retained in the default configuration but a sensitivity study was conducted using a 
profile developed by the Western Regional Air Partnership Fire Emissions Joint Forum (WRAP-
FEJF). A comparison of the temporal profiles is shown in Figure 7.  

Fire emissions were allocated vertically for each hour based on the WRAP-FEJF approach (Air 
Sciences, 2005, Morris et al., 2012; Ramboll, 2016) within the pstfir module. The daily area 
burned for each fire complex is used to classify each fire complex into one of five size bins. The 
fire size classification determines the fraction of emissions allocated to the CAMx surface layer 
and to the elevated plume and defines the top and bottom heights of the elevated plume, for each 
hour of the day (Figure 8). A single point source is used to represent elevated emissions from 
each member polygon of a fire complex using the new EPS3/CAMx capability to define initial 
plume depth. 
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Figure 7. Temporal profiles applied to fire emissions in the EPSv3.22 processing stream based 
on the approaches of the WRAP-FEJF and Randerson et al. (2012). 
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Figure 8. (a) Diurnal profile of the vertical distribution of the fire plumes and (b) the fraction of 
hourly emissions allocated to CAMx vertical layer 1 in each of the five fire classes defined by 
daily area burned within each fire complex. Classes are defined by the area burned, less than 10 
acres (class 1), 10 to 100 acres (class 2), 100 to 1000 acres (class 3), 1000 to 5000 acres (class 4), 
greater than 5000 acres (class 5). 
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3.3 HYSPLIT Smoke Dispersion Modeling 

Smoke dispersion was modeled using HYSPLIT (Stein et al., 2015). The HYSPLIT model uses a 
hybrid of the Lagrangian and Eulerian approaches and is capable of a range of modeling tasks. 
Capabilities include modeling of simple air parcel trajectories, transport, dispersion, chemical 
transformation, and deposition. Dispersion can be modeled using puff or particle mechanisms. 

The smoke emissions inventory for 2012 through 2017 from FINN v2.2 was dispersed using 
HYSPLIT in particle mode using Global Data Assimilation System 0.5 degree (GDAS0P5) 
meteorological data. Fire emissions from FINN v2.2 were used for the domain covering 6° N to 
67° N Latitude, and 51° W to 143° W Longitude. A 50 km resolution receptor grid was used for 
model output covering the domain shown in Figure 9. The smaller extent of the receptor grid was 
selected to reduce computational requirements for the dispersion runs, while still reflecting 
smoke impacts in the domain of interest. The entire year of 2012 was modeled using HYSPLIT, 
while only the March through September months were modeled for 2013 through 2017 to reflect 
periods of maximum fire activity.  

Several emissions preprocessing steps were taken to facilitate running HYSPLIT across multiple 
years. Fires were initially clustered by the fire IDs provided by the FINN output. Additional 
clustering was then performed based on fire density using the DBSCAN method with a search 
radius of 0.05° (Ester et al., 1996). Finally, smaller fires far from the Texas focus area were 
screened from the model inputs so as to reduce the total fire number while having a minimal 
impact on total emissions. Fire screening was performed at varying levels of stringency across 
the domains shown in Figure 9. Screening applied to each domain is shown in Table 6. 

HYSPLIT was run using the BlueSky modeling framework (Larkin et al., 2010), which 
facilitates smoke emissions modeling and dispersion modeling for fire smoke. The BlueSky 
Pipeline software used for this modeling was obtained from 
https://github.com/pnwairfire/bluesky/. The BlueSky Pipeline software has a range of available 
modules, including fuelbeds, consumption, emissions, localmet, plumerise, timeprofile, 
dispersion, export, and visualization; for this work, the dispersion, export, and visualization 
modules were used. Rather than rely on BlueSky pipeline, FINN v2.2 emissions were allocated 
vertically and temporally using the same profiling approaches described in Section 3.1 for the 
CAMx model runs to run HYSPLIT and export results 

HYSPLIT was configured to run efficiently across the modeling domain using carryover smoke. 
Key configuration parameters are listed in Table 7. Valid GDAS0P5 meteorological data were 
not available for March 1 and 10, and August 9, 10, and 12, 2012; August 13, 2013; and March 
7, 2014. For these dates, GDAS1 data at 1-degree resolution were used for HYSPLIT dispersion 
modeling. 
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Table 6. Fire screening domains. Fires smaller than the Fire Site Threshold after clustering were 
removed from the fire emissions dataset prior to HYSPLIT dispersion modeling. 

 

Table 7. HYSPLIT configuration parameters. 

Parameter Description Value  

KHMAX Maximum duration (h) 
for a particle or 
trajectory 

120  

NINIT Particle initialization 1 (=ON) 

VERTICAL_EMISLEVELS_REDUCTION_FACTOR Number of vertical 
levels 

5 

TOP_OF_MODEL_DOMAIN Top of model domain 
(meters) 

10,000 

DELT Minimum integration 
time step (minutes) 

-4.0 

NUMPAR Number of particles 
released at each 
emission point per 
cycle 

500 

N Levels Number of levels for 
HYSPLIT output 

3 

 

Domain Latitude Longitude Fire Size Threshold 
(acres) 

Fire Points 
Removed (%) 

Fire Area 
Removed (%) 

Outer 
Domain  

6.0 to 41.0 -57.0 to 
-124.0 

250 75 20 

Domain 1  13.0 to 40.0 -64.0 to  
-120.0 

100 51 8 

Domain 2  17.0 to 39.0 -75.0 to  
-118.0 

50 35 4 

Domain 3 20.0 to 38.0 -82.0 to  
-116.0 

No screening 0 0 
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Figure 9. Receptor domain used for HYSPLIT modeling; the full map area covers 6° N to 41° N 
Latitude and 57° W to 124° W Longitude. Fire screening was applied in the outer domain, 
domain 1 (red), and domain 2 (purple). No screening was performed in domain 3 (green). 

 

 

 

3.4 Aerosol Optical Depth 

The Second IMPROVE equation (Pitchford et al., 2007) was used to calculate model-estimated 
AOD using output from CAMx and HYSPLIT. The Second IMPROVE equation calculates light 
extinction (bext) based on relative humidity-adjusted aerosol concentrations and Rayleigh 
scattering: 

𝑏ext  ൎ   2.2 ൈ  𝑓ௌሺRHሻ  ൈ  ሾSmall Ammonium Sulfateሿ  ൅  4.8 ൈ  𝑓௅ሺRHሻ  ൈ
 ሾLarge Ammonium Sulfateሿ  ൅  2.4 ൈ  𝑓ௌ ሺRHሻ  ൈ  ሾSmall Ammonium Nitrateሿ  ൅
 5.1 ൈ  𝑓௅ሺRHሻ  ൈ  ሾLarge Ammonium Nitrateሿ  ൅  2.8 ൈ  ሾSmall Organic Massሿ  ൅
 6.1 ൈ  ሾLarge Organic Massሿ  ൅  10 ൈ  ሾElemental Carbonሿ  ൅  1 ൈ  ሾFine Soilሿ  ൅
 1.7 ൈ  𝑓ௌௌሺRHሻ  ൈ  ሾSea Saltሿ  ൅  0.6 ൈ  ሾCoarse Massሿ  ൅  Rayleigh Scattering ൅
 0.33 ൈ  ሾNO2 ሺppbሻሿ                           (4) 

 

Where extinction and scattering are given in inverse megameters, concentrations are given in 
micrograms per cubic meter, extinction efficiency is in square meters per gram, and water 
growth terms (e.g., f(RH)) has no units. Sea salt, small modes of sulfate and nitrate, and large 
modes of sulfate and nitrate have specific water growth terms (fss(RH), fs(RH), and fl(RH), 
respectively).  
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For CAMx, the bext was calculated at each vertical level of the model output using the second 
IMPROVE equation and meteorological data from the 2012 photochemical modeling episode 
described above. AOD was calculated by summing the extinction calculated for each layer, 
scaled by the thickness of the layer.  

HYSPLIT dispersion modeling resulted in total PM2.5, and fractions of PM2.5 specified in Table 8 
were applied to total PM2.5 (values derived from Akagi et al., 2011 and U.S. Environmental 
Protection Agency, 2018). Using the speciated PM2.5, AOD was calculated using Equation 4. 
NASA Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) 
provides three-hour averaged relative humidity, which has been used to calculate AOD in other 
contexts, including the MERRA-2 system (Randles et al., 2017). The relative humidity data 
(tavg3_3d_asm_Nv) was used to estimate RH at each level of HYSPLIT output for use in the 
second IMPROVE equation. Rayleigh scattering and NO2 values were not used in the calculation 
of HYSPLIT AOD because gridded data were not readily available across the study domain. 
Coarse mass was also not used in the calculation because only PM2.5 emissions were used in the 
HYSPLIT dispersion runs.  

The resulting AOD calculated is considered the total column AOD contribution from wildfires. 
This result can be used to represent total column AOD because smoke is unlikely to be 
transported above the 10km top of model domain used in the HYSPLIT dispersion model. 
Typical wildfire smoke plume injection heights rarely exceed 2 km and are not observed above 6 
km (Val Martin et al., 2018). While transport may carry smoke above the HYSPLIT domain in 
rare cases, this is unlikely to substantially impact modeled AOD. 

Table 8. Fractionated PM2.5 assumed for HYSPLIT AOD calculations. 

Component Fraction of PM2.5 

Elemental Carbon 
(EC) 

0.0949 

Organic Carbon (OC) 0.4618 

SO4 0.2857 

NO3 0.0286 

Sea Salt 0.0645 

Fine Soil 0.0645 
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4. Fire Emissions Estimates 

 

Global-scale simulations for 2016 and 2018 using FINNv2.2 with MODIS and VIIRS fire 
detections were conducted to assess the effects of fire activity on emissions estimates for 
different regions of the world. Emissions estimates for North America using FINNv2.2 with 
MODIS and VIIRS fire detections were developed for 2012 through 2018 to support 
comparisons with the MAIAC AOD product. In addition, sensitivity studies were conducted to 
examine the effects of including VIIRS versus using only MODIS fire detections and differences 
between FINNv1.5 and FINNv2.2. The results of these simulations are described in this section. 

 

4.1 FINN v2.2 Emissions Estimates with MODIS and VIIRS Fire Detections 

4.1.1 Global Regions  

Fire emissions estimates during 2016 and 2018 were developed for 12 global regions (Antarctica 
was not included) shown in Figure 10 using FINNv2.2 with MODIS in combination with VIIRS 
fire detections. Figure 11 shows monthly total CO emissions estimates by global region. It 
illustrates distinctive temporal patterns in fire activity between global regions, for example 
agricultural fire activity in Central America and Southern Asia in the spring, and Southern Africa 
in the late spring through fall, as well as interannual variability of emissions between the 2016 
and 2018 fire seasons. The 2018 wildfire season in the U.S. and Canada was particularly 
pronounced relative to the 2016 season. Figure 12 shows annual total global PM2.5 emissions in 
2016 and 2018. 

Figure 10. FINNv2.2 global regions. 
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Figure 11. Monthly total CO emissions (Tg/month) during 2016 (solid) and 2018 (dashed) from 
FINNv2.2 with MODIS and VIIRS active fire detections: (a) North America, (b) Central 
America, (c) South America, (d) Oceania, (e) Northern Africa, (f) Southern Africa, (g) Western 
Europe, (h) Eastern Europe, (i) Near East, (j) North Central Asia, (k) East Asia, and (l) Southern 
Asia. Note differences in scales between plots.  
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(e)                                                                        (f) 

     

(g)                                                                        (h)  
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(k)                                                                    (l)  
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Figure 12. Annual total PM2.5 emissions (kg/km2) in (a) 2016 and (b) 2018.  

 (a) 

 

(b) 

 

 

4.1.2 Interannual Trends in U.S. Subregions and Mexico 

Monthly total emissions of PM2.5 and NOx during 2012 through 2018 from FINN v2.2 with 
MODIS and VIIRS active fire detections in Mexico, Texas, the Western US, the Lower 
Mississippi Valley, and Southeastern US (Figure 13) are shown in Figures 14 and 15, 
respectively. These regions of the United States typically exhibit high fire activity.  

Texas usually experiences two wildfire seasons, winter/spring associated with dry fuels, winds 
and warming temperatures and late summer/early fall with hot, dry weather conditions. Years 
with notable peaks include 2013 and 2016, 2017, and in particular 2018, during which the timing 
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of the fire season began early in the state with high fuel availability, drought and other conducive 
environmental conditions (Russell, 2018). Mexico exhibits strong spring peaks in emissions that 
coincide with agricultural fire activity and can affect air quality in Texas. Seasonal and 
interannual patterns in NOx and PM2.5 emissions are similar within the regions shown. 

 

Figure 13. Mexico and U.S. states grouped by subregion. 
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Figure 14. Annual trends in monthly total PM2.5 emissions (Gg/mo) during 2012 through 2018 
for (a) Texas, (b) Mexico, and (c) Western U.S., (d) Lower Mississippi Valley and (e) 
southeastern U.S. Note differences in scales between plots. 
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 (c)                                                                                             

        

 

(d) 
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(e) 
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Figure 15. Annual trends in monthly total NOx emissions (Gg/month) during 2012 through 2018 
for (a) Texas, (b) Mexico, and (c) Western U.S., (d) Lower Mississippi Valley and (e) 
southeastern U.S. Note differences in scales between plots. 
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(c)                                                                        

   

 

(d) 
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(e) 

 

 

4.2 Sensitivity of Emissions Estimates to VIIRS Active Fire Detections and FINN Version 

Simulations were conducted to examine the effects of including VIIRS versus using only 
MODIS fire detections in FINN v2.2 and differences between FINNv1.5 and FINNv2.2 for the 
2016 base year. Results are shown for Texas, the Southeastern U.S. and Lower Mississippi 
Valley states, and Mexico, and described in detail for Texas. 

Figure 16 shows monthly total PM2.5, NOx and NMOC emissions estimates during 2016 in Texas 
for FINNv.1.5, FINNv2.2 with only MODIS or with MODIS and VIIRS fire detections. Figure 
17 illustrates the spatial patterns in total PM2.5 emissions for the different model configurations 
during February 2016, which had the highest monthly emissions of the year. As described in 
Section 2, several significant changes occurred between FINNv1.5 and v2.2. Overall the changes 
lead to increases in emissions of PM2.5, NOx and NMOC with v2.2 in Texas. It is difficult to 
capture the full complexity of the interactions between model parameters that contribute to 
variations emissions estimates for any given fire event or between different fire events. However, 
Figure 18 provides a perspective of the contribution of land cover types as well as the differences 
in parameters that contribute to differences in emissions estimates between model versions.  

Area burned increases markedly between FINNv1.5 and FINN v2.2 with MODIS detections only 
and more substantially when combined with detection from VIIRS. Although this is a 
consequence of the new algorithm implemented in FINNv2.2 as well as the improved spatial 
resolution of the VIIRS product when it is used, a transition from the use of MODIS Collections 
5 and 6 products for fire detection in FINNv1.5 to the use of MODIS Collection 6 (MCD12Q1) 
with FINNv2.2 could also contribute to differences in burned area. FINN v2.2 also includes 
more recent year-specific MODIS land cover type and VCF products than v1.5. Biomass 
loadings from the FCCS in FINN v.2.2 now supersede North American regional default values, 
unless the user specifies otherwise. 
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Emission factors are similar between the model versions with the notable exception of NMOC. 
All measured NMOC is included in the applied emission factor for FINN v2.2 rather than only 
the identified NMOC fraction. This change dominates the contribution to differences in these 
emissions estimates between the model versions.  

Figure 18 indicates that grasses, shrublands, and forests are most associated with fire activity and 
emissions in Texas. Grasslands have a relatively greater contribution to fires in February than in 
September 2016. Forests provide smaller contributions to total area burned than grasses or 
shrublands. They provide more substantial contributions to emissions of CO, PM2.5, and 
especially NMOC, but smaller contributions to NOx emissions in Texas.   

Figures 19 shows monthly total PM2.5, NOx and NMOC emissions estimates in 2016 in the 
Southeastern U.S. and Lower Mississippi Valley for the different model configurations. Figure 
20 illustrates the spatial patterns in total PM2.5 emissions during March 2016. Figure 21 shows 
the contribution of land cover types as well as the differences in parameters that contribute to 
differences in emissions estimates between model versions for these regions. Similar information 
is provided for Mexico in Figures 22, 23, and 24. 
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Figure 16. Monthly total (a) PM2.5, (b) NOx and (c) NMOC emissions estimates during 2016 in 
Texas by FINNv.1.5, FINNv2.2 with MODIS only fire detections, and FINNv2.2 with MODIS 
and VIIRS fire detections. Note differences in scales between plots. 
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Figure 17. Total PM2.5 emissions (Mg/km2/mo) in February 2016 from FINNv.1.5, FINNv2.2 
with MODIS only fire detections, and FINNv2.2 with MODIS and VIIRS fire detections.  
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Figure 18.  Contribution of land cover type to area burned, biomass loading, and total monthly 
CO, NMOC, NOx, and PM2.5 emissions in Texas from FINN v2.2 with MODIS only or in 
combination with VIIRS fire detections during (a) February and (b) September 2016. 
Contributions are normalized by the values for FINNv1.5. Land cover types shown for Texas 
include tropical forest, temperate forest, evergreen forest, shrublands, grasses, and croplands.  
Note differences in scales between plots.  
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Figure 19. Monthly total (a) PM2.5, (b) NOx and (c) NMOC emissions estimates during 2016 in 
the Southeastern U.S. and Lower Mississippi Valley by FINNv.1.5, FINNv2.2 with MODIS only 
fire detections, and FINNv2.2 with MODIS and VIIRS fire detections. Note differences in scales 
between plots.  
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Figure 20. March monthly total PM2.5 emissions (Mg/km2/mo) in the Southeastern U.S. and 
Lower Mississippi Valley from FINNv.1.5, FINNv2.2 with MODIS only fire detections, and 
FINNv2.2 with MODIS and VIIRS fire detections.  
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Figure 21.  Contribution of land cover type to area burned, biomass loading, and total monthly 
CO, NMOC, NOx, and PM2.5 emissions in the Southeastern U.S. and Lower Mississippi Valley 
from FINN v2.2 with MODIS only or in combination with VIIRS fire detections during (a) 
March and (b) September 2016. Contributions are normalized by the values for FINNv1.5. Land 
cover types shown include tropical forest, temperate forest, evergreen forest, shrublands, grasses, 
and croplands.  Note differences in scales between plots.  
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Figure 22. Monthly total (a) PM2.5, (b) NOx and (c) NMOC emissions estimates in 2016 in 
Mexico by FINNv.1.5, FINNv2.2 with MODIS only fire detections, and FINNv2.2 with MODIS 
and VIIRS fire detections. Note differences in scales between plots. 
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Figure 23. May monthly total PM2.5 emissions (Mg/km2/mo) in Mexico from FINNv.1.5, 
FINNv2.2 with MODIS only fire detections, and FINNv2.2 with MODIS and VIIRS fire 
detections.  
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Figure 24.  Contribution of land cover type to area burned, biomass loading, and total monthly 
CO, NMOC, NOx, and PM2.5 emissions in Mexico from FINN v2.2 with MODIS only or in 
combination with VIIRS fire detections during May 2016. Contributions are normalized by the 
values for FINNv1.5. Land cover types shown include tropical forest, temperate forest, evergreen 
forest, shrublands, grasses, and croplands.  Note differences in scales between plots.  
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5. Assessment of FINN Performance Using Satellite Observations 

 

Comparisons between modeled aerosols and satellite-observed aerosols were performed to 
evaluate model performance. Satellite data were obtained and prepared using the approach 
described in Section 5.1. The model evaluation was performed using both qualitative and 
quantitative approaches: 

1. A qualitative approach involved in-depth assessment of the agreement between modeled 
aerosols and satellite observations, based on examination of spatial patterns for selected 
fire events that impacted Texas and daily and monthly trends in aerosols. Graphical 
evaluation tools such as time series plots, scatter plots, quantile-quantile plots, spatial 
error plots, soccer plots, and bugle plots will be used. 

2. A quantitative approach using statistical measures of agreement between modeled and 
observed aerosols, including statistics including correlation (R), coefficient of 
determination (R2), normalized mean square error (NMSE), bias (FB), and the fraction of 
data where predictions are within a factor of two of observations (FAC2) (Chang and 
Hanna, 2004).  

 

Formulas for the quantitative measures of agreement include: 

𝑅 ൌ
ሺ஼೚ି ஼೚തതതത ሻ൫஼೛ି ஼೛തതതത ൯ തതതതതതതതതതതതതതതതതതതതതതതതതതത

ఙ಴೛ఙ಴೚
  (5) 

𝑁𝑀𝑆𝐸 ൌ  
ሺ஼೚ష ஼೛ ሻమതതതതതതതതതതതതതത

஼೛஼೚തതതതതതത        (6) 

𝐹𝐵 ൌ  
൫஼೚തതതതି ஼೛തതതത൯

଴.ହ൫஼೛തതതതା ஼೚തതതത൯
  (7) 

FAC2= fraction of data that satisfy 

0.5 ൑  
஼೛

஼೚
 ൑ 2.0   (8) 

where: 

𝐶௣:  model prediction, 

𝐶௢:  satellite observations, 

𝐶̅:  mean of data, and 

𝜎௖: standard deviation of the data 

Due to a variety of sources of uncertainty, such as input meteorology or error in satellite 
retrievals, observations and model results were expected to show substantial divergence. 
Generally, an air quality dispersion model can be judged to have performed well if the modeled 
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concentrations agree with surface measurements such that the FAC2 is greater than 50%, the 
relative mean bias is with about 30% or less, and the normalized mean square error is less than a 
factor of three (Chang and Hanna, 2004). In this analysis, performance measured were possibly 
somewhat lower due to the additional uncertainty introduced by the use of satellite observations 
rather than surface measurements. 

5.1 MAIAC Satellite Observations of AOD 

The MAIAC AOD data set presents a key new opportunity to assess wildfire smoke emissions. 
MAIAC has finer spatial resolution than other AOD products from MODIS, is tuned to prevent 
masking of smoke as cloud (Lyapustin et al., 2012), and effectively retrieves AOD over a broad 
range of land cover types. For this work, MAIAC AOD data (MCD19A2v006) were obtained 
from the US Geological Survey Land Processes Distributed Active Archive Center (LP DAAC) 
data archive. 

MODIS images are generally collected twice daily, once in the morning by the instrument 
onboard the NASA Terra satellite and again in the afternoon by the instrument onboard the 
NASA Aqua satellite. MAIAC retrievals are calculated from using MODIS images. In addition 
to AOD retrievals, MAIAC provides metadata on data quality. For data used in this work, AOD 
retrieval values were screened to ensure that only high-quality pixels were retained in subsequent 
analysis (Lyapustin et al., 2018). During the QA process, it was noted that the algorithm 
associated with screening out cloud-influenced data also frequently screens out AOD values over 
fires (see Section 6.2 for more details). The exclusion of AOD data directly over fires suggests 
that the analysis of model data versus observed MAIAC AOD data in the subsequent sections is 
only valid for downwind wildfire plumes, which may bias our comparison values low. MAIAC 
data are provided in tiled format. Tiles were merged on an hourly basis for subsequent analysis. 
For areas of overlap within the hour, values were averaged across all available observations. All 
comparisons with model data were performed using the same hourly between the model and 
satellite data sets. Table 9 provides the AOD QA definitions and quality flags used to screen 
AOD retrievals for subsequent use (see Section 6 for additional data quality information). 
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Table 9. AOD QA definitions and quality flags used to screen AOD retrievals for subsequent 
use. AOD values were retained for retrievals with quality flags shown in bold. 

Bits Type Codes 

0-2 Cloud 
Mask 

000 – Undefined 
001 – Clear 
010 – Possibly cloudy (detected by AOD filter) 
011 – Cloudy (detected by cloud mask algorithm) 
101 – Cloud shadow 
110 – Hot spot of fire 
111 – Water Sediments

3-4 Land-
water 
snow/ice 
mask 

00 – Land 
01 – Water 
10 – Snow 
11 – Ice 

5-7 Adjacency 
mask 

000 – Clear 
001 – Adjacent to clouds 
010 – Surrounded by more than 8 cloudy pixels 
011 – Adjacent to a single cloudy pixel 
100 – Adjacent to snow 
101 – Snow was previously detected in this pixel

8-11 QA for 
AOD over 
land and 
water 

0000 – Best quality 
0001 – Water sediments are detected (water) 
0011 – There is one neighboring cloud 
0100 – There is > 1 neighboring clouds 
0101 – No retrieval (cloudy or other) 
0110 – No retrievals near detected or previously detected snow 
0111 – Climatology AOD (0.02): altitude above 4.2 km (Land)/3.5 km 
(water) 
1000 – No retrieval due to sun glint over water 
1001 – Retrieved AOD is very low (0.05) due to glint (water) 
1010 – AOD within 2 km from the coastline (may be unreliable) 
1011 – Land, research quality: AOD retrieved but CM is possibly cloudy

12 Glint 
Mask 

0 – No glint 
1 – Glint (glint angle < 40 degrees)

13-
14 

Aerosol 
Model 

00 – Background model (regional) 
01 – Smoke detected 
10 – Dust model (dust detected)

15  Reserved 
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5.2 Assessment of HYSPLIT Dispersion Results 

As detailed in Section 3.3, the HYSPLIT dispersion model was applied using FINN v2.2 wildfire 
PM2.5 emissions estimates for 2012 through 2017. The HYSPLIT dispersion model provides 
estimates of the atmospheric particulate mass and spatial distribution due to wildfires. Through 
the use of relative humidity measurements and the average composition of wildfire PM2.5, we 
were also able to estimate wildfire AOD from the HYSPLIT PM2.5 results (as discussed in 
Section 3.4). These results allow us to compare HYSPLIT results with both ground-based PM2.5 
and satellite AOD observations. We also compare HYSPLIT AOD results to CAMx v2.2 AOD 
results to assess the comparability of these models when applied using the same emissions 
estimates from FINN v2.2.  

5.2.1 HYSPLIT Ground-Based Comparison 

For ground-based comparison of HYSPLIT results, we compare total unspeciated PM2.5 output 
from HYSPLIT with total carbon (TC) concentrations at IMPROVE sites in and around Texas. 
TC is calculated as shown in the U.S. EPS RHR Guidance (2016): 

𝑇𝐶 ൌ ൫𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑙 𝐶𝑎𝑟𝑏𝑜𝑛 ൅ ሺ1.8 ∗ 𝑂𝑟𝑔𝑎𝑛𝑖𝑐 𝐶𝑎𝑟𝑏𝑜𝑛ሻ൯   ሾµ௚

௠యሿ  (9)  

TC can be used as a proxy for the biomass burning portion of PM2.5 because wildfire particulate 
matter is comprised of up to 80% organic carbon (Clarke et al., 2007; US EPA RHR Guidance, 
2016; McClure and Jaffe, 2018). Also, because IMPROVE sites are in generally low population 
areas, concentrations of TC are less likely to be influenced by anthropogenic emissions. 
Therefore, TC at IMPROVE sites is expected to correlate more closely than total PM2.5 with 
PM2.5 from wildfires. The comparison of IMPROVE TC and HYSPLIT wildfire PM2.5 allows us 
to assess our ability to reproduce wildfire PM2.5 at the surface. We used TC data from 10 sites in 
and around Texas (including New Mexico, Oklahoma, Arkansas, and Louisiana). Table 10 
shows a list of the IMPROVE sites used and their EPA codes. Each selected site was required to 
have complete data for 2012 through 2017. When comparing HYSPLIT PM2.5 to IMPROVE TC, 
we only considered cases with non-zero estimated wildfire PM2.5 from the HYSPLIT model. The 
daily sum HYSPLIT PM2.5 concentrations were compared with the 24-hour filter-based 
measurement of TC. Note that these are comparisons of coarse resolution grid average model 
estimates with point measurements. 

Figure 25 shows a histogram of the correlation coefficient found when comparing HYSPLIT 
PM2.5 concentrations to IMPROVE TC concentrations. Summer months were chosen for this 
comparison to better relate wildfire values of PM2.5 and TC. This shows, on average, a 
correlation coefficient of 0.54 for HYSPLIT PM2.5 versus IMPROVE TC. Additionally, Figure 
26 shows a detailed comparison of HYSPLIT PM2.5 to IMPROVE TC at two sites. Both the Big 
Bend and Wichita Mountains sites show good correlations between the wildfire PM2.5 estimated 
by the HYSPLIT model and observed TC at the IMPROVE ground site. Values of HYSPLIT 
PM2.5 are significantly higher than TC values due to the comparison approach. Since organic 
carbon can be up to 80% of the of the wildfire particulate matter composition, and elemental 
carbon is typically an order of magnitude lower than organic carbon in wildfire events, it is not 
surprising that the HYSPLIT PM2.5 mass is substantially higher than the IMPROVE TC. 
Inclusion of other PM2.5 components from IMPROVE would likely result less bias between 
HYSPLIT and IMPROVE, but would also be expected to reduce the correlation between the two 



 

70 

due to the impact of other sources at IMPROVE sites. The modest correlation (R2 = 0.27 to 0.34) 
between the HYSPLIT PM2.5 and IMPROVE TC suggests that the HYSPLIT dispersion model 
has modest predictive ability to estimate wildfire PM2.5 concentrations near the surface with the 
FINN v2.2 emissions inventory. 

5.2.2 HYSPLIT vs. MAIAC Observed AOD Comparison 

To further assess the performance of the HYSPLIT dispersion modeling using FINN v2.2 fire 
emissions inventories, we compared the HYSPLIT AOD results with MAIAC satellite 
observations and CAMx model outputs (also using FINN v2.2 fire emissions inventories). For 
the comparison of HYSPLIT versus MAIAC AOD, we resampled MAIAC data from its original 
resolution up to the HYSPLIT’s 50 km resolution. With the modeled concentrations and 
observations compiled with the same spatial resolution, we can compare the two by domain-wide 
statistics (i.e., calculating statistics over the whole domain for a given hour) or grid cell-based 
statistics (i.e., calculating statistics for each grid cell during a specific period time). Due to the 
sporadic availability of MAIAC data, we have done grid cell statistics over monthly time 
periods. This ensures, for the most part, that there are enough data points to calculate relevant 
statistical parameters. Additionally, if any grid cells have less than 20 data points, the statistics 
are not used due to low data availability. Most grid cells and domain-wide statistics are 
calculated using the EPA Atmospheric Model Evaluation Tool (AMET) software that was 
adapted for use with HYSPLIT, MAIAC, and CAMx inputs. The factor of two observations 
(FAC2) statistic does not come standard with the AMET tool, and was calculated separately as 
an indicator of the normalized frequency of predications falling with a factor of two (between -
50% and +100%) of the observations. This value is calculated as a 1 or 0 metric; either AOD 
values are within a factor of two of each other (FAC2 = 1), or they are not within a factor of two 
(FAC2 = 0). This suggests that average FAC2 values will fall between 0 and 1, with a higher 
fraction of data falling within a factor of two between the data sets as FAC2 increases. Statistics 
were calculated for HYSPLIT versus MAIAC during the HYSPLIT run time period (January – 
December 2012, and March – September for 2013-2017). 

Table 11 shows the standard model comparison statistics (R, R2, Fraction Bias [FB], Normalized 
Mean Square Error [NMSE], and FAC2) for HYSPLIT versus MAIAC data by month. Monthly 
data are averaged for all years. These statistics show a low correlation between the modeled 
HYSPLIT AOD and observed MAIAC AOD. Figures 27-28 also show a fairly low correlation 
between domain-wide HYSPLIT and MAIAC data (average R2 of 0.15). Additionally, Figures 
29-30 show that the FB of HYSPLIT vs. MAIAC values are biased significantly low, while the 
NMSE values are biased high. This suggests that the error between HYSPLIT and MAIAC 
values is large, with the HYSPLIT values biased low compared to MAIAC values. Bugle and Q-
Q plots shown in Figures 31-32 provide the same result. The large difference between MAIAC 
and HYSPLIT AOD is not surprising because the MAIAC AOD includes total column 
contributions from all sources, including dust, anthropogenic aerosol, biogenic secondary 
organic aerosol, wildfire aerosols, etc., whereas the HYSPLIT values only represents the wildfire 
PM2.5 in the atmospheric column. We expect the HYSPLIT and MAIAC AOD to be well 
correlated when atmospheric PM is primarily due to wildfire emissions, but not well correlated 
under non-fire dominated conditions (i.e., most of the time).  

Figure 33 shows a time series of HYSPLIT vs. MAIAC correlation coefficients for 2012–2017 
with FINN v2.2 fire emission inventory. In Section 4.1.2, it is mentioned that Texas experiences 
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two wildfire seasons; (1) in the spring, associated with agricultural burning in central/south 
America and the southern U.S., and (2) during late summer/early fall when weather conditions 
are hot and dry, causing natural wildfires. These periods correlate well with Figure 34 and Figure 
35, which show an increased correlation between MAIAC and HYSPLIT during the spring and 
late summer/early fall months. This is expected for times when wildfire influence is more 
prevalent.  

5.2.3 HYSPLIT vs. CAMx v2.2 Wildfire-Only Comparison 

We also compare HYSPLIT output with CAMx v2.2 results. This comparison allows us to 
evaluate differences in model results since both models use the same fire emissions inventories 
(FINN v2.2). Because CAMx v2.2 data were run for April 29th through October 1st, 2012 we are 
able to evaluate the performance of each model during the active wildfire season. Additionally, 
CAMx output was calculated at the 4 km nest grid space shown in Figure 6. To adequately 
compare CAMx and HYSPLIT results, we resampled CAMx data up to the 50 km grid space 
used by HYSPLIT. We also calculate CAMx v2.2 wildfire-only AOD values by subtracting a 
“no fire” run of CAMx from the total CAMx v2.2 AOD values. This allows us to compare 
strictly wildfire AOD values between CAMx and HYSPLIT and avoid the issues noted in the 
MAIAC versus HYSPLIT analysis.  

Table 12 and Figures 36-37 provide a similar analysis to that done for MAIAC versus HYSPLIT 
data above. Model comparison statistics for monthly CAMx v2.2 wildfire-only vs. HYSPLIT are 
shown in Table 12. Figures 38-41 show the correlation, FB, NMSE, and other model comparison 
statistics to illustrate the difference between HYSPLIT and CAMx v2.2 wildfire-only results. 
From these plots and statistics, we see that HYSPLIT and CAMx v2.2 wildfire-only results 
show, on average, a modest correlation coefficient (R ~0.5) and low FB between the two models 
(with HYSPLIT values biased slightly low). The soccer plot in Figure 42 also shows that most of 
the error and bias between HYSPLIT and CAMx v2.2 wildfire-only values lie within the outer 
goal, suggesting less than a factor of two difference on average. However, in the scatter plot 
shown in Figure 42, we do see some values where HYSPLIT is biased high compared to CAMx. 
This is due to a change from spring to summer where HYSPLIT is biased slightly high in the 
spring/early summer months to being biased slightly low during the late summer months (see FB 
values in Table 12). This change could be due to the types of fires that are burning during each 
season and/or the type of modeling done in HYSPLIT versus CAMx (PM2.5-only or multi-
species, respectively). Also, FAC2 values show that approximately half of the data between 
HYSPLIT and CAMx are within a factor of two for all months in 2012. From these statistics we 
assert that the HYSPLIT and CAMx v2.2 wildfire-only AOD results are in reasonable agreement 
given largely different modeling methodologies and grid structure. 
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Table 10. IMPROVE Sites used for TC analysis with HYSPLIT PM2.5. The IMPROVE site code 
is shown on the left, and the EPA site code is shown on the right. 

Names State Sites EPA Code Latitude Longitude 

Big Bend TX BIBE1 480430101 29.3 -103.2 

Bosque del 
Apache 

NM BOAP1 350539000 33.9 -106.9 

Caney Creek AR CACR1 051130003 34.5 -94.1 

Guadalupe 
Mountains 

TX GUMO1 481099000 31.8 -104.8 

Salt Creek NM SACR1 350059000 33.5 -104.4 

Stilwell OK STIL1 400719010 35.8 -94.7 

Upper Buffalo 
Wilderness 

AR UPBU1 051019000 35.8 -93.2 

White Mountain NM WHIT1 350279000 33.5 -105.5 

Wheeler Peak NM WHPE1 350559000 36.6 -105.5 

Wichita 
Mountains 

OK WIMO1 400319000 34.7 -98.7 
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Figure 25. Correlation between HYSPLIT PM2.5 concentrations and IMPROVE TC 
concentrations for 10 IMPROVE sites in and around Texas. July through September values were 
chosen to better compare with wildfire season. 
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Figure 26. Comparison of daily sum HYSPLIT PM2.5 to IMPROVE TC at Big Bend, TX (left), 
and Wichita Mountains, OK (right), for 2012 through 2017. Linear regression equations and R2 
values for each comparison are shown at the top of the figure. 
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Table 11. MAIAC vs. HYSPLIT AOD model comparison statistics. Monthly values are averaged over all years in which monthly data 
is available (2012 – 2017). Values are provided with ± one standard deviation.  

Month N 
Mean MAIAC 

AOD 
Mean HYSPLIT 

AOD R R
2 FB (%) NMSE FAC2 

1 526 0.062 ± 0.019 0.002 ± 0.004 0.089 ± 0.225 0.058 ± 0.091 ‐188 ± 15 201 ± 438 0.019 ± 0.135 

2 402 0.075 ± 0.026 0.002 ± 0.003 0.125 ± 0.213 0.061 ± 0.094 ‐190 ± 12 156 ± 192 0.016 ± 0.126 

3 476  0.098 ± 0.032 0.006 ± 0.009 0.218 ± 0.251 0.110 ± 0.138 ‐182 ± 20 178 ± 553 0.028 ± 0.162 

4 454  0.121 ± 0.039 0.007 ± 0.010 0.322 ± 0.295 0.190 ± 0.207 ‐185 ± 14 287 ± 1352 0.015 ± 0.118 

5 431 0.137 ± 0.042 0.007 ± 0.008 0.350 ± 0.285 0.204 ± 0.196 ‐187 ± 10 97 ± 331 0.008 ± 0.090 

6 432  0.137 ± 0.047 0.003 ± 0.003 0.252 ± 0.235 0.119 ± 0.133 ‐192 ± 5 115 ± 242  0.002 ± 0.044 

7 327 0.144 ± 0.054 0.003 ± 0.004 0.155 ± 0.216 0.071 ± 0.107 ‐193 ± 6 190 ± 825 0.002 ± 0.042 

8 340  0.135 ± 0.042 0.009 ± 0.015 0.203 ± 0.267 0.112 ± 0.154 ‐182 ± 18 137 ± 1149 0.021 ± 0.130 

9 402  0.099 ± 0.041 0.007 ± 0.011 0.191 ± 0.233 0.091 ± 0.131 ‐178 ± 19 88 ± 327 0.030 ± 0.165 

10 610  0.071 ± 0.021 0.004 ± 0.004 0.046 ± 0.192 0.039 ± 0.062 ‐179 ± 17 148 ± 523 0.027 ± 0.163 

11 592  0.068 ± 0.017 0.004 ± 0.004 0.016 ± 0.211 0.045 ± 0.084 ‐178 ± 19 114 ± 260 0.034 ± 0.180 

12 386  0.062 ± 0.018 0.001 ± 0.001 0.141 ± 0.230 0.072 ± 0.095 ‐193 ± 7 245 ± 409 0.006 ± 0.079 
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Figure 27. Domain-wide HYSPLIT AOD values (mean model AOD - left) and MAIAC AOD 
values (mean observed AOD – bottom) for 2012–2017. Linear regression equations and R2 
values for each comparison are shown at the top of the figure. 
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Figure 28. Domain-wide HYSPLIT vs. MAIAC AOD correlation coefficients for 2012 - 2017. 
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Figure 29. Domain-wide FB histogram of HYSPLIT vs. MAIAC AOD values for 2012-2017. 

 



 

79 

Figure 30. Domain-wide NMSE histogram of HYSPLIT vs. MAIAC AOD values for 2012-
2017. 

 

 
Figure 31. Domain-wide bugle plots of HYSPLIT vs. MAIAC AOD values for 2012-2017 are 
shown. The fractional bias bugle plot is shown on the left, while the fraction error bugle plot is 
shown on the right. 
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Figure 32. Domain-wide Q-Q plots of HYSPLIT (mean model AOD - left) and MAIAC (mean 
observational AOD - right) AOD values for 2012-2017.  

  

Figure 33. A domain-wide soccer plot of normalized mean error vs. normalized mean bias for 
HYSPLIT vs. MAIAC AOD data during 2012-2017. Values are colored by the maximum 
HYSPLIT AOD value in the domain to assess the influence of wildfire smoke on bias and error 
between the two datasets. 
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Figure 34. HYSPLIT vs. MAIAC Correlation Coefficient for 2012-2017 shown in top panel. 
The red line indicates a 3 day moving average of hourly correlation coefficients. Daily sum 
FINN v2.2 PM2.5 fire emissions are shown in the bottom panel. 

 

 

Figure 35. Monthly HYSPLIT vs. MAIAC Correlation Coefficients are shown on the left. 
Monthly FINN v2.2 emissions are shown on the right for 2012-2017. 
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Table 12. HYSPLIT vs. CAMx v2.2 WF-only AOD Model Comparison Statistics are shown. 
Monthly values are averaged hourly data for 2012. Values are provided with ± one standard 
deviation. 

 

 

Figure 36. Domain-wide HYSPLIT AOD values (mean model AOD - left) and CAMx v2.2 WF-
only AOD values (mean observed AOD – bottom) for 2012. Linear regression equations and R2 
values for each comparison are shown at the top of the figure. 

 

Month N 
Mean CAMx2 

WF AOD 
Mean 

HYSPLIT AOD R R
2 FB (%) NMSE FAC2 

5 322 0.007 ± 0.003  0.019 ± 0.020 0.221 ± 0.309 0.144 ± 0.151 33 ± 73 8 ± 11 0.443 ± 0.497

6 322 0.006 ± 0.003 0.008 ± 0.004 0.260 ± 0.256 0.133 ± 0.144 9 ± 41 1 ± 1 0.583 ± 0.493

7 322 0.002 ± 0.001 0.003 ± 0.002 0.314 ± 0.251 0.161 ± 0.152 33 ± 43 3 ± 4 0.363 ± 0.481

8 322 0.006 ± 0.004 0.005 ± 0.003 0.359 ± 0.236 0.184 ± 0.149 ‐19 ± 41 1 ± 1 0.470 ± 0.499

9 322 0.017 ± 0.012 0.011 ± 0.007 0.497 ± 0.223 0.297 ± 0.170 ‐47 ± 48 1 ± 1 0.367 ± 0.482
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Figure 37. Domain-wide HYSPLIT vs. CAMx v2.2 WF-only AOD correlation coefficients for 
2012. 

 

 

Figure 38. Domain-wide FB histogram of HYSPLIT vs. CAMx v2.2 WF-only AOD values for 
2012. 
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Figure 39. Domain-wide NMSE histogram of HYSPLIT vs. CAMx v2.2 WF-only AOD values 
for 2012. 

 

 

Figure 40. Domain-wide bugle plots of HYSPLIT vs. CAMx v2.2 WF-only AOD values for 
2012. The fractional bias bugle plot is shown on the left, while the fraction error bugle plot is 
shown on the right. 
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Figure 41. Domain-wide Q-Q plots of HYSPLIT (mean model AOD – left) and CAMx v2.2 
(mean observational AOD – right) WF-only AOD values for 2012. 
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Figure 42. A domain-wide soccer plot of normalized mean error vs. normalized mean bias for 
HYSPLIT vs. CAMx v2.2 WF-only AOD data during 2012. Values are colored by the maximum 
HYSPLIT AOD value in the domain to assess the influence of wildfire smoke on bias and error 
between these two datasets. 

 

 

5.3 Assessment of CAMx Model Results 

We assessed the CAMx model results by comparing total CAMx AOD versus MAIAC observed 
AOD values. While total CAMx results include wildfire influence from the addition of the FINN 
v1.5 or v2.2 fire emission inventories, CAMx also includes other non-fire related sources for a 
total column AOD that can be compared objectively with MAIAC observed values. CAMx 
wildfire-only results (as described in Section 5.2.3) were also compared with HYSPLIT results 
during wildfire-influenced periods to assess the ability of the model to accurately represent fire 
influences.  

As the comparison of HYSPLIT versus CAMx v2.2 wildfire-only were already discussed in 
Section 5.2.3, we will not discuss them again here. We will briefly note that a comparison of 
HYSPLIT versus CAMx v1.5 wildfire-only AOD was conducted, and results were nearly 
identical to the results with CAMx v2.2 (see Appendix B for additional figures and tables). In 
Section 5.3.1, we discuss the difference in the CAMx v2.2 and v1.5 in comparison with MAIAC 
observed values to assess how changes made to CAMx v2.2 influences overall results. CAMx 
data are compared with HYSPLIT and MAIAC data during the period in which the CAMx 
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model was run—April 29 through October 1, 2012—within the 4 km nested grid space shown in 
Figure 6. 

5.3.1 CAMx vs. MAIAC comparison 

CAMx v2.2 total AOD are compared to observed MAIAC AOD values to assess overall model 
performance. In a similar to fashion to the comparisons discussed in Sections 5.2.2 and 5.2.3, 
Table 13 and Figures 43-48 provide domain-wide statistical comparisons between CAMx v2.2 
and MAIAC AOD for 2012. Based on the statistics shown in Table 13, we find that CAMx is 
often biased high (FB values) for all months; however, NMSE values remain low during all time 
periods. Additionally, FAC2 values show that MAIAC and CAMx values are within a factor of 
two around 50% of the time. The scatter plot in Figure 43 shows a relative low bulk domain-
wide correlation between MAIAC and CAMx AODs. The soccer and bugle plots in Figure 46 
shows a relatively low error between the two datasets, with a decreasing error at higher AOD 
values. This suggests that although low AOD values between the CAMx and MAIAC datasets 
are not well correlated, at high higher AOD values (high smoke, dust, etc.), these events are well 
corroborated. These bulk statistics were also tested for total CAMx v1.5 AOD versus MAIAC 
and were found to be very similar. Figures and tables for CAMx v1.5 versus MAIAC results can 
be found in Appendix C.  

When comparing MAIAC versus CAMx v2.2 results, on average, higher FAC2 results were seen 
over water compared with land. This could be due to more accurate (or biased high) MAIAC 
AOD retrievals over a surface that is less cloudy and has less seasonal reflectivity changes 
compared with land. An example of this is shown in Figure 49. This figure shows the average 
monthly FAC2 values for MAIAC versus CAMx v2.2 in each grid cell within the 4 km nested 
grid area. However, when compared with R2 values in each grid cell for the same month, we see 
a similar frequency of higher R2 values over land and sea (with slightly more high R2 values over 
land) – see Figure 50.  

Overall, we find that total CAMx modeled AOD values are biased high when compared with 
MAIAC-observed AOD values. Additionally, CAMx values are closer to the respective MAIAC 
AOD values over water, but the correlation between the two datasets in similar for land or sea. 
Finally, we see most of the variability in CAMx and MAIAC values at low AODs; the bias and 
error between the two dataset decreases with increasing AOD. 

5.3.2 CAMx v2.2 versus CAMx v1.5 

To assess the changes in CAMx v2.2 versus v1.5, we compare total CAMx results from both 
versions with MAIAC observed AOD. Figure 51 shows a time series of hourly, domain-averaged 
MAIAC and total CAMx data for 2012. As mentioned in Section 5.3.1, CAMx values are biased 
high compared with MAIAC values. Also, while low MAIAC AODs do not compare well with 
CAMx modeled AODs, higher MAIAC AOD values are better reproduced. Additional 
information in this figure shows that CAMx v2.2 values are individually slightly higher overall 
than the previous CAMx v1.5 AODs for the same time period, but follow the same general 
pattern. When comparing bulk total CAMx AODs from v2.2 and v1.5 versus MAIAC values 
(see Figure 52), we see again that the two version of CAMx show an almost identical correlation 
and slope, with individual values being slightly higher in the CAMx v2.2 compared with v1.5.  
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To compare CAMx results for wildfire events specifically, we can estimate when and where we 
see wildfire influence using CAMx wildfire-only AODs (discussed in in Section 5.2.3). If we 
filter all CAMx total and MAIAC data for times when the CAMx wildfire-only values are above 
the 75th percentile, we can assume that these times are likely affected by wildfire smoke. Since 
the CAMx wildfire-only product is already subset for wildfires, we choose the 75th percentile to 
capture times when wildfire AOD is elevated, but not so high that we filter out a significant 
portion of the data. This suggests that when the 75th percentile of CAMx wildfire-only AODs 
cutoff is applied to coinciding total CAMx and MAIAC data, we are filtering for wildfire 
“likely” events in those datasets. Figure 53 shows the results of this analysis. During wildfire 
events, the bulk CAMx v2.2 performs slightly better than CAMx v1.5—in both correlation and 
slope—to the observed MAIAC AOD values. Additionally, it appears that CAMx overestimated 
the MAIAC-observed AOD values slightly more in CAMx v2.2 versus v1.5 during the wildfire 
events. This is consistent with the previous bulk comparison. While the bulk comparison of the 
two CAMx version is very similar, we will also compare case studies in Section 5.4 to further 
explore variability in CAMx v2.2 versus v1.5 at hourly time scales.  

 

Table 13. MAIAC vs. CAMx v2.2 AOD model comparison statistics. Monthly values are 
averaged hourly data for 2012. Values are provided with ± one standard deviation. 

Month N 
Mean MAIAC 

AOD 
Mean 

CAMx2 AOD R R
2 FB (%) NMSE FAC2 

5 6710 0.179 ± 0.066 0.266 ± 0.038 0.137 ± 0.294 0.104 ± 0.142 48 ± 37 0.517 ± 0.510 0.587 ± 0.492

6 6613 0.169 ± 0.068 0.275 ± 0.040 0.164 ± 0.290 0.110 ± 0.150 57 ± 34 0.569 ± 0.513 0.567 ± 0.495

7 5436 0.155 ± 0.082 0.244 ± 0.031 0.061 ± 0.264 0.073 ± 0.100 60 ± 43 0.778 ± 0.856 0.379 ± 0.485

8 7430 0.152 ± 0.054 0.248 ± 0.027 0.120 ± 0.256 0.079 ± 0.095 56 ± 33 0.576 ± 0.533 0.534 ± 0.499

9 10635 0.123 ± 0.056 0.265 ± 0.042 0.202 ± 0.257 0.106 ± 0.129 82 ± 33 1.197 ± 1.148 0.267 ± 0.442
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Figure 43.  Domain-wide CAMx v2.2 AOD values (mean model AOD - left) and MAIAC AOD 
values (mean observed AOD – bottom) for 2012. Linear regression equations and R2 values for 
each comparison are shown at the top of the figure. 
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Figure 44. Domain-wide FB histogram of MAIAC vs. CAMx v2.2 AOD values for 2012. 

 

 

Figure 45. Domain-wide NMSE histogram of MAIAC vs. CAMx v2.2 AOD values for 2012. 
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Figure 46. Domain-wide bugle plots of MAIAC vs CAMx v2.2 AOD values for 2012. The 
fractional bias bugle plot is shown on the left, while the fraction error bugle plot is shown on the 
right.  

 

 

Figure 47. Domain-wide Q-Q plots of CAMx v2.2 (mean model AOD - left) and MAIAC (mean 
observational AOD - right) AOD values for 2012. 
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Figure 48. A domain-wide soccer plot of normalized mean error vs. normalized mean bias for 
MAIAC vs. CAMx v2.2 AOD data during 2012. Values are colored by the maximum CAMx 
v2.2 WF-only AOD value in the domain to assess the influence of wildfire smoke on bias and 
error between these two datasets. 
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Figure 49. MAIAC vs. CAMx v2.2 monthly average cell-based FAC2 values for June 2012.  

 

 

Figure 50. MAIAC vs. CAMx v2.2 monthly average cell-based R2 values for June 2012. 
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Figure 51. MAIAC (green) versus total CAMx v2.2 (red) and total CAMx v1.5 (blue) hourly 
domain-averaged AOD for 2012.  
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Figure 52. MAIAC observed AOD (bottom) vs. CAMx v2.2 (left, blue) and CAMx v1.5 (left, 
green) for all hourly 2012 values. 
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Figure 53. MAIAC observed AOD (bottom) vs. CAMx v2.2 (left, blue) and CAMx v1.5 (left, 
green) values for hourly WF-only events (filtered by CAMx WF-only 75th percentile) in 2012. 

 

5.4 Case Studies 

5.4.1 Case Study Selection 

Case studies were chosen to aid in the assessment of the FINN v2.2 fire emissions inventory by 
comparing the modeled wildfire AOD from HYSPLIT, CAMx v1.5, and CAMx v2.2 with 
observed AOD from the MAIAC satellite product. Event time windows were chosen based on 
visible satellite imagery (MODIS Aqua and Terra) and the Hazard Mapping System (HMS) 
smoke and fire product. When fires were detected and smoke was visible in both of these 
products within the 4 km nested modeling grid shown in Figure 6, we were able to adequately 
compare MAIAC AOD with the HYSPLIT and FINN v2.2 or v1.5-derived model products. This 
assessment precludes many days where clouds or high wildfire smoke levels masked the MAIAC 
AOD signal, narrowing our possible case studies to days that were relatively cloud-free and/or 
regions surrounding the highest wildfire smoke locations. Additionally, the MAIAC product only 
provides observed AOD values once or twice per day. This further narrows our case study 
potential to hours when the MODIS polar orbiting satellites would take measurements over the 4 
km nested area (approximately 15:00-19:00 UTC, or Z, which corresponds to 10:00-14:00 CST). 
Therefore, we have chosen case studies from dates and times that (1) are relatively unbiased 
from cloud influence, and (2) have an adequate amount of MAIAC data to compare with the 
modeled products. 
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Case studies for a week-long smoke episode from September 19-26, 2012, are provided in 
Figures 54-68 below. Additionally, a case study from June 27, 2012, is also characterized in 
Figures 69-71. We provide a side-by-side comparison for each event of hourly HYSPLIT, 
CAMx v2.2, and MAIAC AOD values. Additionally, we explore the differences in CAMx v2.2 
and CAMx v1.5 versus MAIAC AOD values during each event to assess the performance of the 
FINN v2.2 fire emissions inventory compared with v1.5.   

5.4.2 Week-Long Case Study for September 19-26, 2012 

Figure 54 shows a side-by-side comparison of the first event (September 19, 2012) during the 
week-long case study of fires in Texas by illustrating HYSPLIT, CAMx v2.2 wildfire-only, and 
MAIAC AOD values during a satellite pass-over hour (in this case for 17:00 Z). For all 
subsequent figures, HYSPLIT data will be shown at a 50 km resolution, while CAMx and 
MAIAC data will be shown at a 4 km resolution consistent with the 4 km nested grid box in 
Figure 6. This comparison provides a good example of how well HYSPLIT, CAMx v2.2 
wildfire-only, and MAIAC AOD values compare spatially during a wildfire event. Fire plumes 
are more visible in the CAMx v2.2 wildfire-only results, but the overall pattern of AOD is 
reflected in both the modeled (HYSPLIT) and observed (MAIAC) views. In this case, we see a 
general pattern of high AOD in north-central Texas (near the fires) and lower AOD in western 
Louisiana. In order to assess the performance of CAMx v2.2 versus CAMx v1.5, we plotted the 
wildfire-only values from each model versus the MAIAC observed data in Figure 55. CAMx 
wildfire-only data points provide a good estimation of where and how severely wildfire smoke 
might be affecting an area. Since the MAIAC AOD values are a total column aggregate of AOD 
(i.e., including dust, anthropogenic particulate matter, biogenic SOA, wildfire smoke, etc.) we 
filter out CAMx and MAIAC co-located points that value CAMx wildfire-only AODs below a 
background threshold (what we assume to be non-fire affected points). This threshold changes 
slightly from fire to fire depending on the intensity, but range from 0.05 to 0.2 throughout all 
cases shown in this section. We also subset the AOD comparison by the areas most affected by 
wildfire smoke influence. For this case, we subset the AOD data for an area around the fires at 
95° to 100° W Longitude, and 30° to 34° N Latitude. Both the background AOD cutoff and 
subset area values are provided in the figure captions for each subsequent case. In this case 
(Figure 55), we see that CAMx v2.2 values are better correlated (R2=0.35 vs. R2=0.17) and 
provide a closer representation (slope closer to 1.0) of the MAIAC observed values during this 
wildfire event. 

Figure 56 shows the second event from the week-long case study; September 20, 2012, at 19:00 
Z. In this case, we see fires in Southeastern Texas and Western Louisiana. These fires are clearly 
visible in the CAMx v2.2 wildfire-only data and slightly less so in the HYSPLIT data. In the 
MAIAC data, the fires are shown as smaller areas of higher AOD values when compared with 
the CAMx figure, but are still visible. We also see slightly higher values of MAIAC AOD over 
North-Central Texas. These are corroborated in the HYSPLIT and CAMx v2.2 figures (note that 
the CAMx v2.2 values are similar to the MAIAC values, even though the color scales diverge 
due to very high CAMx wildfire AOD values in Louisiana). These high fire-related AOD values 
coming from the north-northwest are from large wildfires in the Northwest U.S. Additionally, we 
investigate total CAMx v2.2 and v1.5 AOD in Figure 57. Here, CAMx v2.2 again provides a 
slightly better correlation (R2=0.15 vs. R2=0.12) and closer representation to the observed 
MAIAC values. Looking at the wildfire-only CAMx values in Figure 58, we see a much higher 
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correlation with MAIAC AOD values in the CAMx v2.2 (R2=0.38) versus v1.5 (R2=0.005), and 
a positive slope in the CAMx v2.2 results compared to a negative slope in the v1.5 values. 

Figure 59 shows the third event on September 21, 2012, at 18:00 Z. Fires in this case are mostly 
in Western Louisiana and Eastern Texas. HYSPLIT, CAMx wildfire-only, and MAIAC AOD 
values all show a sweeping west-southwest to east-northeastern pattern of higher AOD values. 
Within the area near the fires (shown in Figure 60), neither model shows much association with 
the MAIAC-observed AOD values; however, the CAMx v2.2 wildfire-only values show some 
correlation (R2=0.10) with the observations, whereas the CAMx v1.5 values show no correlation. 

Figure 61 shows the fourth event on September 22, 2012, at 18:00 Z. On this day, there are 
significant impacts on AOD values in Texas from wildfires in the Northwest U.S., and a smaller 
fire at the Oklahoma/Arkansas border. It is important to note that the CAMx wildfire-only values 
are similar to the observed MAIAC AOD values, even though the color scale diverge between 
these two plots. The HYSPLIT plot also shows a sweeping northerly and westerly flow of higher 
AOD values in addition to a hotspot near the Oklahoma/Arkansas border. For the 
CAMx/MAIAC comparison in Figure 62, although there are less direct comparison points 
between the CAMx/MAIAC data (especially for the fire near the Oklahoma/Arkansas border), 
we still see a slightly better correlation between the CAMx v2.2 wildfire-only AOD values 
(R2=0.13) than the CAMx v1.5 values (R2=0.048). It is important to note that the CAMx v2.2 
does overestimate the AOD values by a factor of three compared to the CAMx v1.5. This is 
consistent with overall higher CAMx values reported in version 2.2 versus 1.5 mentioned in 
Section 5.3. 

Figure 63 shows the fifth event on September 23, 2012, at 18:00 Z. Although there is much less 
MAIAC data available for this time period, we are still able to compare values for the fires in 
Western Louisiana that are visible in the HYSPLIT, CAMx, and MAIAC plots. Comparing the 
CAMx v2.2 and v1.5 values in Figure 64, we see a similar correlation with MAIAC AOD values 
between v2.2 (R2=0.12) and v1.5 (R2=0.17), but a closer representation of MAIAC values (slope 
closer to 1) in v2.2. 

Figure 65 shows the sixth event on September 24, 2012, at 17:00 Z. Fires are predominately in 
Eastern Texas and Western Louisiana. In all three plots, we see higher AOD values near the fires 
and lower AOD values further west. In the CAMx comparison with MAIAC in Figure 66, we 
again see a better correlation with MAIAC data from v2.2 (R2=0.15 vs. R2=0.008), but an 
overestimation in the absolute AOD value.  

Figure 67 shows the seventh event on September 26, 2012, at 19:00 Z. This case is primarily 
effected by a large fire in Western Louisiana. We see consistent, qualitative AOD structure from 
the models and the observed plots. When we focus in on the fire influenced area in Figure 68 and 
compare CAMx v2.2 and v1.5, we see that while the correlations between model and observed 
AOD are similar for each version (R2=0.12 in v2.2 and R2=0.18 in v1.5), the CAMx v1.5 gets 
closer to the observed values, while CAMx v2.2 overestimates. For the week-long case study, we 
suggest that while CAMx v2.2 AOD values correlate better with observed values overall and on 
most days than CAMx v1.5 AOD, in some cases, CAMx v1.5 performs better and has less 
overestimation (as previously stated in Section 5.3).   
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5.4.3 June 27, 2012 Case Study 

Our final case study for June 27, 2012, is shown in Figure 69 shows another instance of fires in 
Eastern Texas. All three plots show a similar AOD spatial pattern, with higher values in the east 
due to the fire. In Figure 70, the total CAMx AOD from v1.5 and v2.2 are compared with 
MAIAC observed AOD. While correlations and absolute value of AOD between v1.5 and v2.2 
are similar (e.g., R2=0.43 in v1.5 and R2=0.41 in v2.2), we see a slightly better slope (16% 
higher) in the v2.2 values versus the v1.5 values. This suggests that we are seeing a slightly 
better estimate of observed values in v2.2. In Figure 71, we can also compare wildfire-only 
CAMx values to MAIAC observed AOD. Although there are very few points that are associated 
with this event and the correlation are strongly influenced by a few high data points, we still see 
a better correlation and slope from v2.2 despite some overestimation associated with the latter 
CAMx version.   

5.4.4 Case Study Summary 

Overall, the case studies show that HYSPLIT and CAMx are able to qualitatively reproduce 
areas of high AOD caused by fires when compared with the observed values from MAIAC. 
Additionally, it appears that CAMx v2.2 wildfire-only AODs correlate better with the observed 
MAIAC AOD values than CAMx v1.5. We do see some cases of over estimation of AOD in 
CAMx v2.2 compared with v1.5.  
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Figure 54. HYSPLIT (left), CAMx v2.2 wildfire-only (middle), and MAIAC (right) AOD values for September 19, 2012 at 17:00 Z. 
HYSPLIT data is at 50 km resolution, while CAMx and MAIAC data is at 4 km resolution. Light grey area indicates areas outside of 
the boundaries of MAIAC/CAMx data. Dark grey indicates areas with no AOD values within the HYSPLIT, CAMx, and MAIAC 
boundaries. Note the difference in AOD scaling for each figure. 
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Figure 55. CAMx v2.2 wildfire-only AOD values (shown in blue) and CAMx v1.5 wildfire-only 
AOD values (shown in green) plotted versus MAIAC observed AOD on September 19, 2012, at 
17:00 Z. The background cut-off for CAMx is 0.05. The subset area is 95°-100° W Longitude 
and 30°-34° N Latitude. Linear regression equations and R2 values for each comparison are 
shown at the top of the figure in the respective model color.  
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Figure 56. HYSPLIT (left), CAMx v2.2 wildfire-only (middle), and MAIAC (right) AOD values for September 20, 2012, at 19:00 Z. 
HYSPLIT data is at 50 km resolution, while CAMx and MAIAC data is at 4 km resolution. Light grey indicates areas outside of the 
boundaries of MAIAC/CAMx data. Dark grey indicates areas with no AOD values within the HYSPLIT, CAMx, and MAIAC 
boundaries. Note the difference in AOD scaling for each figure. 
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Figure 57. CAMx v2.2 AOD values (shown in blue) and CAMx v1.5 wildfire-only AOD values 
(shown in green) versus MAIAC observed AOD on September 20, 2012, at 19:00 Z. Linear 
regression equations and R2 values for each comparison are shown at the top of the figure in the 
respective model color. 
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Figure 58. CAMx v2.2 wildfire-only AOD values (shown in blue) and CAMx v1.5 wildfire-only 
AOD values (shown in green) are plotted versus MAIAC observed AOD on September 20, 2012, 
at 19:00 Z. The background cut-off for CAMx is 0.1. The subset area is 90°-95° W Longitude 
and 29°-34° N Latitude. Linear regression equations and R2 values for each comparison are 
shown at the top of the figure in the respective model color. 
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Figure 59. HYSPLIT (left), CAMx v2.2 wildfire-only (middle), and MAIAC (right) AOD values are shown for September 21, 2012, 
at 18:00 Z. HYSPLIT data is at 50 km resolution, while CAMx and MAIAC data is at 4 km resolution. Light grey area indicates area 
outside of the boundaries of MAIAC/CAMx data. Dark grey indicates areas with no AOD values within the HYSPLIT, CAMx, and 
MAIAC boundaries. Note the difference in AOD scaling for each figure. 
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Figure 60. CAMx v2.2 wildfire-only AOD values (shown in blue) and CAMx v1.5 wildfire-only 
AOD values (shown in green) are plotted vs. MAIAC observed AOD on September 21, 2012, at 
18:00 Z. The background cut-off for CAMx is 0.2. The subset area is 90°-100° W Longitude and 
29°-34° N Latitude. Linear regression equations and R2 values for each comparison are shown at 
the top of the figure in the respective model color. 
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Figure 61. HYSPLIT (left), CAMx v2.2 wildfire-only (middle), and MAIAC (right) AOD values are shown for September 22, 2012, 
at 18:00 Z. HYSPLIT data is at 50 km resolution, while CAMx and MAIAC data is at 4 km resolution. Light grey area indicates area 
outside of the boundaries of MAIAC/CAMx data. Dark grey indicates areas with no AOD values within the HYSPLIT, CAMx, and 
MAIAC boundaries. Note the difference in AOD scaling for each figure. 
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Figure 62. CAMx v2.2 wildfire-only AOD values (shown in blue) and CAMx v1.5 wildfire-only 
AOD values (shown in green) are plotted vs. MAIAC observed AOD on September 22, 2012, at 
18:00 Z. The background cut-off for CAMx is 0.2. The subset area is 92°-101° W Longitude and 
29°-34° N Latitude. Linear regression equations and R2 values for each comparison are shown at 
the top of the figure in the respective model color. 
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Figure 63. HYSPLIT (left), CAMx v2.2 wildfire-only (middle), and MAIAC (right) AOD values are shown for September 23, 2012, 
at 18:00 Z. HYSPLIT data is at 50 km resolution, while CAMx and MAIAC data is at 4 km resolution. Light grey area indicates area 
outside of the boundaries of MAIAC/CAMx data. Dark grey indicates areas with no AOD values within the HYSPLIT, CAMx, and 
MAIAC boundaries. Note the difference in AOD scaling for each figure. 
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Figure 64. CAMx v2.2 wildfire-only AOD values (shown in blue) and CAMx v1.5 wildfire-only 
AOD values (shown in green) are plotted versus MAIAC observed AOD on September 23, 2012, 
at 18:00 Z. The background cut-off for CAMx is 0.05. The subset area is 90°-96° W Longitude 
and 29°-33° N Latitude. Linear regression equations and R2 values for each comparison are 
shown at the top of the figure in the respective model color. 
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Figure 65. HYSPLIT (left), CAMx v2.2 wildfire-only (middle), and MAIAC (right) AOD values are shown for September 24, 2012, 
at 17:00 Z. HYSPLIT data is at 50 km resolution, while CAMx and MAIAC data is at 4 km resolution. Light grey area indicates area 
outside of the boundaries of MAIAC/CAMx data. Dark grey indicates areas with no AOD values within the HYSPLIT, CAMx, and 
MAIAC boundaries. Note the difference in AOD scaling for each figure. 
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Figure 66. CAMx v2.2 wildfire-only AOD values (shown in blue) and CAMx v1.5 wildfire-only 
AOD values (shown in green) are plotted vs. MAIAC observed AOD on September 24, 2012, at 
17:00 Z. The background cut-off for CAMx is 0.1. The subset area is 90°-94° W Longitude and 
30°-33° N Latitude. Linear regression equations and R2 values for each comparison are shown at 
the top of the figure in the respective model color. 
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Figure 67. HYSPLIT (left), CAMx v2.2 wildfire-only (middle), and MAIAC (right) AOD values are shown for September 26, 2012, 
at 19:00 Z. HYSPLIT data is at 50 km resolution, while CAMx and MAIAC data is at 4 km resolution. Light grey area indicates area 
outside of the boundaries of MAIAC/CAMx data. Dark grey indicates areas with no AOD values within the HYSPLIT, CAMx, and 
MAIAC boundaries. Note the difference in AOD scaling for each figure. 
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Figure 68. CAMx v2.2 wildfire-only AOD values (shown in blue) and CAMx v1.5 wildfire-only 
AOD values (shown in green) are plotted vs. MAIAC observed AOD on September 26, 2012 at 
19:00 Z. The background cut-off for CAMx is 0.05. The subset area is 90°-93° W Longitude and 
30°-33° N Latitude. Linear regression equations and R2 values for each comparison are shown at 
the top of the figure in the respective model color. 
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Figure 69. HYSPLIT (left), CAMx v2.2 wildfire-only (middle), and MAIAC (right) AOD values are shown for June 27, 2012, at 
17:00 Z. HYSPLIT data is at 50 km resolution, while CAMx and MAIAC data is at 4 km resolution. Light grey area indicates area 
outside of the boundaries of MAIAC/CAMx data. Dark grey indicates areas with no AOD values within the HYSPLIT, CAMx, and 
MAIAC boundaries. Note the difference in AOD scaling for each figure. 
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Figure 70. CAMx v2.2 AOD values (shown in blue) and CAMx v1.5 wildfire-only AOD values 
(shown in green) are plotted vs. MAIAC observed AOD on June 27, 2012, at 17:00 Z. Linear 
regression equations and R2 values for each comparison are shown at the top of the figure in the 
respective model color. 
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Figure 71. CAMx v2.2 wildfire-only AOD values (shown in blue) and CAMx v1.5 wildfire-only 
AOD values (shown in green) are plotted vs. MAIAC observed AOD on June 27, 2012, at 17:00 
Z. The background cut-off for CAMx is 0.1. The subset area is 91°-97° W Longitude and 30°-
33° N Latitude. Linear regression equations and R2 values for each comparison are shown at the 
top of the figure in the respective model color. 
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6. Audits of Data Quality 

 
6.1 Model Development 

Quality assurance was addressed throughout the project including FINN algorithm development, 
data processing, and analysis activities. As part of AQRP Project 14-011 (McDonald-Buller et 
al., 2015), a thorough independent review of all lines of the FINN source code was conducted by 
Dr. Yosuke Kimura at the University of Texas at Austin. The FINN v.2.2 application for this 
project was developed as an outcome of AQRP Project 14-011 and TCEQ feedback.  

The FINNv2.2 geographic preprocessor was written in Structured Query Language (SQL) and 
Python3 by Dr. Yosuke Kimura. McDonald-Buller et al. (2015) described in detail the data 
quality assurance processes for burned area estimates and geometries and comparisons of vector 
and raster intersection methods for identifying underlying land cover in burned areas. The 
preprocessor code was originally written in a Linux environment and ported into the Docker 
environment. Porting to the Docker environment was accomplished by Mr. Max Joseph at 
University of Colorado, Boulder. These two project personnel independently worked on their 
assignments, and quality assured each other’s work by reviewing the code and applying sample 
input data. Dr. Christine Wiedinmyer conducted testing by running the code and evaluating the 
results with the sample inputs. The open source code and instructions for its installation and use 
are accessible at https://github.com/yosukefk/finn_preproc. 

In project AQRP 14-011, the algorithm that formed the basis of the FINN preprocessor was 
implemented in ArcPy in the ArcGIS workstation environment. The code had scaling issues that 
prohibited wide application of the model. Implementing it in the PostGIS environment resolved 
this issue.  Execution wall clock times for the applications of FINNv2.2 with MODIS and VIIRS 
active fire detections for North America and at a global scale are shown in Table 14. 

Table 14. Execution wall clock time (hours) by geographic extent and model year (with active 
fire feature count). 

Geographic Extent Model Year Input AF 
Feature Count 

Wall Clock 
Time (hours) 

Processing Speed 
(feature/sec) 

North America 2012 1643598 1.1 421 

North America 2013 1922007 1.4 377 

North America 2014 1859737 1.5 341 

North America 2015 1827237 1.5 335 

North America 2016 1606230 0.9 478 

North America 2017 2153236 1.5 403 

Global 2016 24805366 13.1 524 

Global 2818 23399746 12.6 515 
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The FINNv2.2 emissions and chemical speciation codes used in this work were written in 
Interactive Data Language (IDL) by Dr. Wiedinmyer. The code was applied in its original form 
and its implementation was quality assured by Dr. Kimura. 

Input data used in the study, including active fire detections, land cover, and biomass loading 
products were obtained from and quality assured by their independent official sources as 
described in Section 2. The sources and versions of the data products are documented in Section 
2. They were visually inspected by QGIS mapping and evaluated for agreement with the original 
source as well as for reasonableness. Emission factors were taken from the peer-reviewed 
literature.  

FINN emission estimates were rigorously quality assured by summarizing emissions of NOx, 
NMOC, CO, PM2.5 by geographic region and land cover (by both the MODIS and FINN generic 
land cover types). Selected events that were associated with high concentration estimates based 
on CAMx and HYSPLIT simulations were revisited for quality assurance. In addition to the 
systematic quality assurance activities described above, the inventory was examined using GIS 
systems throughout the course of the project.  

The FINN emissions output for 2012 was processed with EPS3 fire emission-specific pre-
processors developed as a part of AQRP 14-011 project. The entire code was evaluated carefully; 
updates were made for the new mapping of the MOZART-T1 mechanism. Special attention was 
paid to the vertical placement of fires and the assigned plume rise values (bottom and top values) 
for adequacy.   

Extensive QA was performed on the HYSPLIT model output and MAIAC satellite observations 
by an analyst at Sonoma Technology who was unassociated with the project. In each data set for 
which QA was performed, the number of files examined was at minimum 10% of the total data 
set. Additionally, the files used in QA were chosen at random from each data set. 

6.2 HYSPLIT Model AOD Data Quality Audit 

To validate fire locations and smoke patterns, HYSPLIT model outputs were compared to 
MODIS Terra Aerosol and Aqua Aerosol satellite images and/or to Hazard Mapping System 
(HMS) fire maps as observed on the AirNow-Tech website. 148 data files (equivalent to >10% 
of total HYSPLIT data), corresponding to 148 days, were assessed during QA. Hourly PM2.5 data 
at 50 m height were investigated for all files. For 67 files either PM2.5 at 500 m or 10,000 m was 
additionally assessed. QA analysis resulted in 6.1% (9 days) of files flagged as questionable for 
reasons including: (1) inconsistencies between fires marked on HMS fire maps and smoke 
observed in HYSPLIT output, and (2) smoke lingering over oceans in HYSPLIT output longer 
than expected. The remaining 94% of data examined during the QA screening were deemed 
consistent with the compared data sets.  

144 HYSPLIT Aerosol Optical Depth (AOD) output files (equivalent to 10% of the total AOD 
HYSPLIT data set) were visually examined to ensure the validity of the results. These files were 
specifically checked for abnormal geometric features in spatial variability of AOD and for 
unreasonably high AOD values (AOD ≥1). Of the files checked, 8.3% (12 files) were noted to 
have issues such as suspect geometric AOD patterning or “spots,” which were inconsistent with 
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expected results. 40 files (27.8%) contained at least one hour when AOD was ≥1. The remaining 
93 files checked (64.6%) exhibited no issues. 

6.3 MAIAC Satellite AOD Data Quality Audit 

219 MAIAC AOD satellite images (equivalent to 10% of the total MAIAC data set) were 
visually examined for indications of cloud masking, edge effects, and/or other spatial AOD 
abnormalities. 77 files (35.2%) were assessed as potentially having one of these issues. Of these 
77 instances, in 13 files (5.9%) the cloud masking algorithm appeared especially aggressive at 
the center of fires, which materialized as a red triangular artifact at the center of some fires. The 
remaining 142 files (64.8%) exhibited none of the above issues. The masking of smoke was 
confirmed as an issue with processing of MODIS collection 6 MAIAC AOD (MCD19A2) that 
was not present in previous versions of the MAIAC retrieval. Where observed, the wildfire 
smoke masking issue impacted only the densest portion of the smoke plume, while the majority 
of the plume remained unmasked. Therefore, it is considered that images can still be used for 
valid comparisons between the model and satellite data to evaluate the agreement for smoke-
impacted locations. 
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7. Conclusions and Recommendations 

The FINN modeling system was developed as a global-scale fire emissions model to estimate the 
daily emissions of trace gases and particles from open biomass burning. It was designed to 
support atmospheric chemical transport modeling, including consistent, high temporal and spatial 
resolution across local to global scales and chemical speciation of compounds for common 
atmospheric chemical mechanisms. Since its initial release in 2010, the model and its 
applications have continued to evolve, which has culminated in the development of FINNv2.2.  

The FINNv2.2 modeling system consists of three primary components that include the 
preprocessor, emissions model, and chemical speciation code. Its development addresses 
improvements needed to earlier versions, particularly in the detection of smaller fires and the 
estimation of area burned. The model incorporates recent data products and/or scientific findings 
for active fire detections, land cover characterization, biomass loadings, emission factors, and the 
chemical speciation of NMOC. It is an open source code available through the GitHub 
development platform. 

Global simulations for 2016 and 2018 highlighted the effects of fire activity on emissions 
estimates for different regions of the world, as well as the interannual variability of emissions 
between the 2016 and 2018 fire seasons. Emissions estimates were developed for 2012 through 
2018 for North America. In Texas during this time span, years with relatively higher peaks in 
emissions, which typically occurred in the late winter/spring, included 2013 and 2016, 2017, and 
in particular 2018.  

During 2016, fire activity in Texas primarily occurred during the winter/spring months with peak 
emissions in February, as well as the late summer/fall with peak emissions in September. PM2.5, 
NOx, and NMOC emissions exhibited the same seasonal patterns. Grasslands had a greater 
contribution to fire activity in February 2016 than September 2016. Forests provided smaller 
contributions to total area burned and NOx emissions than grasses or shrublands in Texas but had 
more pronounced influences on emissions of PM2.5 and especially NMOC.  

Several significant changes occurred between FINNv1.5 and v2.2. Overall the changes led to 
increases in emissions of PM2.5, NOx and NMOC with v2.2 in Texas. It is difficult to capture the 
full complexity of the interactions between model parameters that contribute to variations 
emissions estimates for any given fire event or between different fire events. However, it is 
evident that the new algorithm implemented in FINNv2.2 to address the limitations in the burned 
area assumptions of previous versions and the inclusion of active fire detections from VIIRS 
have made important contributions to the differences in emissions estimates. Transitions to more 
recent MODIS active fire detection and land cover data products, as well as biomass loadings 
from the USDA Forest Service FCCS, also play a role. Emission factors are similar between the 
model versions with the notable exception of NMOC. All measured NMOC is included in the 
applied emission factor for FINN v2.2 rather than only the identified NMOC fraction. This 
change dominates the contribution to differences in these emissions estimates between the model 
versions.  

Overall results of the model evaluation indicate that photochemical modeling with FINN fire 
emissions shows reasonable agreement with independent satellite data (FB ~50%, FAC2 ~55%). 
The model performance improved for cases with higher average AOD, showing reduced levels 
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of error and bias. HYSPLIT model results showed good agreement between surface observations 
of total carbon at the surface, indicating that the model well-represents the distribution of PM2.5 
from wildfire smoke at ground level. However, HYSPLIT results generally showed poor 
performance when compared to satellite data. In particular, HYSPLIT’s estimates are biased low 
relative to satellite observations, likely due to the lack of simulated aerosols from non-fire 
sources. Agreement between HYSPLIT model results and satellite observations improved at 
times when smoke emissions were elevated above normal levels. 

Results of the evaluation indicate that the modifications to FINN made between versions 1.5 and 
2.2 have improved representation of wildfire smoke in the photochemical modeling results. 
Overall statistics for the CAMx model AOD comparison with satellite data indicate similar 
performance with the two versions of the emissions model. However, when smoke-dominated 
events were identified, the relationship between modeled and observed AOD improved for both 
FINN emissions versions. Furthermore, the case studies of smoke events show that model runs 
conducted with FINN v2.2 frequently showed better agreement with satellite observations of 
AOD relative to model runs conducted with FINN v1.5. These results indicate that the domain-
wide statistics are dominated by variability in AOD unrelated to wildfire smoke. By focusing on 
high-smoke cases, we are able to identify and quantify notable improvements in model 
performance between FINN v1.5 and FINN v2.2. Prior work has shown success in using satellite 
AOD retrievals for assessing emissions models for biomass burning, where model agreement has 
increased substantially during periods of heavy smoke activity (Rolph et al., 2009). The 
evaluation performed here further demonstrate the value of emissions inventory assessment 
using satellite data.  

It is recommended that FINNv2.2 continue to undergo evaluation across different regions of the 
world and that new findings from on-going field campaigns continue to be used to inform future 
evolution of the model. 
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Appendix A. - Chemical Speciation 

 

Table A1. Chemical speciation profile applied to FINN (VOC) emissions(g) for the MOZART-
T1 chemical mechanism (moles) as a function of land cover type.  

Description MOZART-T1 
Species 

Grassland 
and 
Savanna

Boreal 
Forest 

Tropical 
Forest 

Temperate 
Forest 

Woody 
Savanna/ 
Shrubland 

Croplands 

alpha-pinene APIN 0.009 0.259 0.000 0.261 0.053 0.010

benzene BENZENE 0.144 0.290 0.000 0.253 0.442 0.091

lumped alkanes C>3 BIGALK 0.156 1.821 0.219 0.415 0.644 0.246

lumped alkenes C>3 BIGENE 1.467 0.627 0.662 1.393 1.274 0.674

beta-pinene BPIN 0.000 0.209 0.000 0.008 0.004 0.000

benzaldehyde BZALD 0.791 0.166 0.120 0.298 0.272 0.325

ethyne (acetylene) C2H2 2.103 1.167 0.672 2.513 1.975 1.701

ethene C2H4 1.218 1.407 1.505 1.930 2.886 1.412

ethane C2H6 0.859 1.168 0.939 0.611 0.641 0.673

propene C3H6 0.647 0.499 0.603 0.487 0.557 0.457

propane C3H8 0.090 0.194 0.114 0.149 0.561 0.142

formaldehyde CH2O 1.532 1.361 2.299 2.181 2.285 1.716

ethanol C2H5OH 0.000 0.023 0.000 0.066 0.055 0.000

acetaldehyde CH3CHO 1.037 0.416 1.404 0.758 0.792 0.929

acetonitrile CH3CN 0.117 0.176 0.399 0.088 0.130 0.142

acetone CH3COCH3 0.201 0.242 0.433 0.297 0.242 0.162

acetic acid CH3COOH 2.371 1.360 2.029 1.292 1.353 2.349

methanol CH3OH 1.451 1.608 3.031 1.744 1.650 2.328

lumped cresols 
(hydroxymethylbenzenes) 

CRESOL 0.059 0.040 0.000 0.059 0.058 0.074 

glycolaldehyde GLYALD 0.390 0.233 1.886 0.210 0.128 0.800

hydrogen cyanide HCN 0.559 0.846 0.625 0.684 0.927 0.416

formic acid HCOOH 0.206 0.254 0.683 0.259 0.134 0.426

nitrous acid HONO 0.298 0.228 1.001 0.326 0.643 0.187

hydroxyacetone HYAC 0.309 0.149 0.609 0.223 0.118 1.548

isoprene ISOP 0.069 0.085 0.029 0.129 0.138 0.062

limonene LIMON 0.000 0.000 0.000 0.158 0.013 0.000

methacrolein MACR 0.000 0.024 0.222 0.113 0.147 0.000

methyl ethyl ketone MEK 0.370 0.104 0.666 0.274 0.286 0.387

methyl glyoxal CH3COCHO 0.347 0.090 0.000 0.135 0.094 0.171

methyl vinyl ketone MVK 0.317 0.087 0.222 0.247 0.301 0.193

limonene MYRC 0.000 0.000 0.000 0.002 0.003 0.000

phenol, product of 
benzene chemistry 

PHENOL 0.472 0.517 0.191 0.345 0.457 0.408 

toluene TOLUENE 0.457 1.327 0.769 0.605 0.531 0.375
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Description MOZART-T1 
Species 

Grassland 
and 
Savanna

Boreal 
Forest 

Tropical 
Forest 

Temperate 
Forest 

Woody 
Savanna/ 
Shrubland 

Croplands 

lumped xylenes XYLENES 0.385 0.238 0.040 0.422 0.355 0.295

dimethyl phenol from 
xylenes oxidation 

XYLOL 0.108 0.056 0.000 0.088 0.046 0.130 

 

 

Table A2. Mapping between MOZART-T1 and CB6r4 (gas phase) and CF (particulate phase) 
chemical species used in the EPS v.3.22 processing stream. 

Description MOZART-T1 Species CB6r4 Species

carbon monoxide CO CO

oxides of nitrogen NOx NO2

sulfur dioxide SO2 SO2

ammonia NH3 NH3

alpha-pinene APIN TERP

benzene BENZENE BENZ

lumped alkenes C>3 BIGENE
0.75 OLE + 1.5 PAR + 0.25 
IOLE

beta-pinene BPIN TERP

benzaldehyde BZALD TOL

ethyne (acetylene) C2H2 ETHY

ethene C2H4 ETH

ethanol C2H5OH ETOH

ethane C2H6 ETHA

propene C3H6 PAR + OLE

propane C3H8 PRPA

formaldehyde CH2O FORM

acetaldehyde CH3CHO ALD2

acetonitrile CH3CN 2*NR

acetone CH3COCH3 ACET

methyl glyoxal CH3COCHO MGLY

acetic acid CH3COOH AACD

methanol CH3OH MEOH

lumped cresols 
(hydroxymethylbenzenes) CRESOL CRES
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Description MOZART-T1 Species CB6r4 Species

glycolaldehyde GLYALD ALDX

hydrogen cyanide HCN NR

formic acid HCOOH FACD

nitrous acid HONO HONO

hydroxyacetone HYAC 3*PAR

isoprene ISOP ISOP + ISP

limonene LIMON TERP

methacrolein MACR ISPD

methyl ethyl ketone MEK 3*PAR + KET

methyl vinyl ketone MVK ISPD

 limonene MYRC TERP

phenol, product of benzene 
chemistry PHENOL CRES

toluene TOLUENE TOL

lumped xylenes XYLENES XYL

dimethyl phenol from 
xylenes oxidation XYLOL CRES

particulate matter <2.5 μm PM25*
-1*CPRM + [(1-x-y)*FPRM + 
x*PSO4 + y*PNO3] 

organic carbon OC+ 1.7*POA + (-1.7)*FPRM 

black carbon BC PEC + (-1)*FPRM 

particulate matter <10 μm  PM10 CPRM
*FINN PM25 is mapped to CF mechanism FPRM, PSO4 and PNO3. The distribution among three CB6 species are dependent on 
generic vegetation type identified by FINN. For the vegetation types of croplands, savanna and grasslands, woody savanna and 
shrublands, 3.45% PSO4 and 1.03% PNO3 is assumed. For other vegetation types (forests), 28.6% PSO4 and 2.86% PNO3 are 
assumed on mass basis. The remaining mass is mapped to FPRM. 
+POA for the CF mechanism is estimated from OC in FINN, assuming an OA to OC ratio of 1.7. The masses of POA and EC are 
subtracted from FPRM estimate. 
CPRM for the CF mechanism is determined by subtracting FINN PM25 from PM10. 
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Appendix B – CAMx v1.5 wildfire-only vs. HYSPLIT 

 

Table B1. HYSPLIT vs. CAMx v1.5 wildfire-only AOD model comparison statistics. Monthly 
values are averaged hourly data for 2012. Values are provided with ± one standard deviation. 

Month N 

Mean 
CAMx1 WF 

AOD 

Mean 
HYSPLIT 

AOD R R2 FB (%) NMSE FAC2 

5 322 0.006 ± 0.003 0.019 ± 0.020 0.182 ± 0.265 0.103 ± 0.120 47 ± 66 8 ± 11 0.431 ± 0.495

6 322 0.006 ± 0.002 0.008 ± 0.004 0.204 ± 0.244 0.101 ± 0.122 15 ± 37 1 ± 1 0.559 ± 0.496

7 322 0.002 ± 0.001 0.003 ± 0.002 0.293 ± 0.248 0.147 ± 0.144 61 ± 45 6 ± 6 0.289 ± 0.453

8 322 0.004 ± 0.002 0.005 ± 0.003 0.306 ± 0.242 0.152 ± 0.138 14 ± 50 2 ± 1 0.436 ± 0.496

9 322 0.009 ± 0.006 0.011 ± 0.007 0.501 ± 0.222 0.301 ± 0.165 1 ± 46 1 ± 1 0.465 ± 0.496

 

Figure B1. Domain-wide HYSPLIT AOD values (mean model AOD - left) and CAMx v1.5 
WF-only AOD values (mean observed AOD – bottom) for 2012. Linear regression equations and 
R2 values for each comparison are shown at the top of the figure. 
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Figure B2. Domain-wide FB histogram of HYSPLIT vs. CAMx v2.2 wildfire-only AOD values 
for 2012. 
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Figure B3. Domain-wide NMSE histogram of HYSPLIT vs. CAMx v1.5 WF-only AOD values 
for 2012-2017. 

 

 

Figure B4. Domain-wide bugle plots of HYSPLIT vs CAMx v1.5 WF-only AOD values for 
2012. The fractional bias bugle plot is shown on the left, while the fraction error bugle plot is 
shown on the right. 
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Figure B5. Domain-wide Q-Q plots of HYSPLIT (mean model AOD - left) and CAMx v1.5 
(mean observational AOD - right) WF-only AOD values for 2012. 
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Figure B6. A domain-wide soccer plot of normalized mean error vs. normalized mean bias for 
HYSPLIT vs. CAMx v1.5 wildfire-only AOD data during 2012. Values are colored by the 
maximum HYSPLIT AOD value in the domain to assess the influence of wildfire smoke on bias 
and error between these two datasets 
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Appendix C – CAMx v1.5 vs. MAIAC 

 

Table C1. MAIAC vs. CAMx v1.5 AOD model comparison statistics. Monthly values are 
averaged hourly data for 2012. Values are provided with ± one standard deviation. 

Month N 

Mean 
MAIAC 

AOD 

Mean 
CAMx1 

AOD R R2 FB (%) NMSE FAC2 

5 6710 
0.179 ± 
0.066 

0.264 ± 
0.037 

0.137 ± 
0.300 

0.108 ± 
0.150 48 ± 37 

0.497 ± 
0.489 

0.588 ± 
0.492 

6 6613 
0.169 ± 
0.068 

0.274 ± 
0.039 

0.166 ± 
0.295 

0.114 ± 
0.153 56 ± 34 

0.564 ± 
0.511 

0.570 ± 
0.495 

7 5436 
0.155 ± 
0.082 

0.243 ± 
0.030 

0.062 ± 
0.272 

0.077 ± 
0.105 59 ± 43 

0.767 ± 
0.856 

0.379 ± 
0.485 

8 7430 
0.152 ± 
0.054 

0.245 ± 
0.025 

0.131 ± 
0.262 

0.085 ± 
0.103 56 ± 33 

0.540 ± 
0.481 

0.540 ± 
0.498 

9 10635 
0.123 ± 
0.056 

0.255 ± 
0.034 

0.202 ± 
0.261 

0.108 ± 
0.130 80 ± 34 

1.099 ± 
1.144 

0.294 ± 
0.455 
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Figure C1. Domain-wide CAMx v1.5 AOD values (mean model AOD - left) and MAIAC AOD 
values (mean observed AOD – bottom) for 2012. Linear regression equations and R2 values for 
each comparison are shown at the top of the figure. 

 

 
Figure C2. Domain-wide FB histogram of MAIAC vs. CAMx v1.5 AOD values for 2012. 
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Figure C3. Domain-wide NMSE histogram of MAIAC vs. CAMx v1.5 AOD values for 2012. 

 

 

Figure C4. Domain-wide bugle plots of MAIAC vs CAMx v1.5 AOD values for 2012. The 
fractional bias bugle plot is shown on the left, while the fraction error bugle plot is shown on the 
right. 
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Figure C5. Domain-wide Q-Q plots of CAMx v1.5 (mean model AOD - left) and MAIAC 
(mean observational AOD - right) AOD values for 2012. 

 

 

Figure C6. A domain-wide soccer plot of normalized mean error vs. normalized mean bias for 
MAIAC vs. CAMx v1.5 AOD data during 2012. Values are colored by the maximum CAMx 
v1.5 wildfire-only AOD value in the domain to assess the influence of wildfire smoke on bias 
and error between these two datasets. 

 


